论文标题

终身学习系统的潜在特性

Latent Properties of Lifelong Learning Systems

论文作者

Rivera, Corban, Ashcraft, Chace, New, Alexander, Schmidt, James, Vallabha, Gautam

论文摘要

创建能够证明终身学习的人工智能(AI)系统是一个基本挑战,并且已经提出了许多方法和指标来分析算法属性。但是,对于现有的终身学习指标,算法贡献被任务和场景结构混淆。为了减轻此问题,我们引入了一种算法 - 敏捷的可解释的替代模型方法,以估计终身学习算法的潜在特性。我们验证通过合成数据实验估算这些特性的方法。为了验证替代模型的结构,我们分析了来自流行的终身学习方法和基准的真实绩效数据,并适用于终身分类和终身增强学习。

Creating artificial intelligence (AI) systems capable of demonstrating lifelong learning is a fundamental challenge, and many approaches and metrics have been proposed to analyze algorithmic properties. However, for existing lifelong learning metrics, algorithmic contributions are confounded by task and scenario structure. To mitigate this issue, we introduce an algorithm-agnostic explainable surrogate-modeling approach to estimate latent properties of lifelong learning algorithms. We validate the approach for estimating these properties via experiments on synthetic data. To validate the structure of the surrogate model, we analyze real performance data from a collection of popular lifelong learning approaches and baselines adapted for lifelong classification and lifelong reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源