论文标题

几何相对熵和Barycentricrényi差异

Geometric relative entropies and barycentric Rényi divergences

论文作者

Mosonyi, Milán, Bunth, Gergely, Vrana, Péter

论文摘要

我们提供了定义单调量子相对熵和(多变量)量子rényi差异的系统方法,从一组单调量子相对熵开始。 尽管在信息理论中具有至关重要的重要性,但到目前为止,已经知道了经典相对熵的两个添加剂和单调量子扩展。在这里,我们给出了一个一般的程序,可以从具有相同属性的给定属性构建单调和添加剂量子相对熵。特别是,从叶叶木相对熵开始时,这给出了一个新的单参数单调和添加剂量子相对熵在全层状态下插入叶片和贝拉夫金·斯图斯基的家族。 在不同的方向上,我们使用经典变分的公式的概括来定义与任何有限的量子相对熵相对应的多变量量子rényi量$(d^{q_x})_ {x \ in x}} $和签名的概率度量$ p $ p $ p $ p $ q_p^{\ mathrm {b},\ mathbf {q}}}}((ρ_x)_ {x \ in x}):= \ sup_ {τ{τ\ ge 0} \ left \ {\ text {tr} \,τ-\ sum_xp(x)d^{q_x}(τ\ |ρ_x)\ right \}。 $$我们表明,每当$ p $是一种概率度量时,单调量子相对熵定义单调rényi数量。通过适当的归一化,上述数量的负对数给出了在2个可变情况下经典的rényi$α$ divergence的量子扩展($ x = \ {0,1 \} $,$ p(0),$ p(0)=α$)。 We show that if both $D^{q_0}$ and $D^{q_1}$ are monotone and additive quantum relative entropies, and at least one of them is strictly larger than the Umegaki relative entropy then the resulting barycentric Rényi divergences are strictly between the log-Euclidean and the maximal Rényi divergences, and hence they are different from any previously studied quantum RényiDivergence。

We give systematic ways of defining monotone quantum relative entropies and (multi-variate) quantum Rényi divergences starting from a set of monotone quantum relative entropies. Despite its central importance in information theory, only two additive and monotone quantum extensions of the classical relative entropy have been known so far, the Umegaki and the Belavkin-Staszewski relative entropies. Here we give a general procedure to construct monotone and additive quantum relative entropies from a given one with the same properties; in particular, when starting from the Umegaki relative entropy, this gives a new one-parameter family of monotone and additive quantum relative entropies interpolating between the Umegaki and the Belavkin-Staszewski ones on full-rank states. In a different direction, we use a generalization of a classical variational formula to define multi-variate quantum Rényi quantities corresponding to any finite set of quantum relative entropies $(D^{q_x})_{x\in X}$ and signed probability measure $P$, as $$ Q_P^{\mathrm{b},\mathbf{q}}((ρ_x)_{x\in X}):=\sup_{τ\ge 0}\left\{\text{Tr}\,τ-\sum_xP(x)D^{q_x}(τ\|ρ_x)\right\}. $$ We show that monotone quantum relative entropies define monotone Rényi quantities whenever $P$ is a probability measure. With the proper normalization, the negative logarithm of the above quantity gives a quantum extension of the classical Rényi $α$-divergence in the 2-variable case ($X=\{0,1\}$, $P(0)=α$). We show that if both $D^{q_0}$ and $D^{q_1}$ are monotone and additive quantum relative entropies, and at least one of them is strictly larger than the Umegaki relative entropy then the resulting barycentric Rényi divergences are strictly between the log-Euclidean and the maximal Rényi divergences, and hence they are different from any previously studied quantum Rényi divergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源