论文标题
混合价氧化铁中受对称的1D链受保护的1D链
Symmetry protected 1D chains in mixed-valence iron oxides
论文作者
论文摘要
在过去的十年的高压研究中,发现了一系列全新的氧化铁系列,例如fe $ _4 $ _4 $ o $ _5 $,fe $ _5 $ _5 $ o $ _6 $,fe $ _7 $ o $ _9 $等,具有与一级(1D)(1D)trigonal Prisms empraed slra slra slra slra slra sambabs of Slra的近距离相关的结构。在这里,我们基于特定的晶体学生成机制开发了统一的方法,该方法可以预测这些氧化物的结构,并自然地根据平板周期对它们进行分类。当包括磁相互作用时,我们表明1D链具有对板上铁离子的磁扰动的对称保护,并且平板尺寸决定了磁性的类型,该磁序的类型是铁磁或反铁磁。动力学平均场理论计算揭示了Fe离子的轨道选择性Mott状态以及对低维行为的电导率趋势,并沿1D链具有特定的增强。在整个系列中,链的解耦增加,因此随着板的固有电荷顺序,这些结构具有允许耦合1D线模型系统的实验实现。我们指出有可能以薄膜形式稳定这些化合物的可能性,这些化合物以及各种可能的离子替代品以及这些化合物在环境压力下可恢复的事实,使它们成为具有有趣的Magnetotransport现象的工程师物理系统的非常有前途的平台,这是由于最近在Zrte $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $。
During the last decade of high-pressure research a whole new series of iron oxides was discovered, like Fe$_4$O$_5$, Fe$_5$O$_6$, Fe$_7$O$_9$ etc., featuring closely related structures with arrays of one-dimensional (1D) chains of trigonal prisms embedded between slabs of octahedra. Here, we develop a unified approach to the series based on a specific crystallographic generation mechanism which predicts the structures of these oxides and naturally classifies them in terms of the slab cycle. When including magnetic interactions, we show that the 1D chains have a symmetry protection against magnetic perturbations from the iron ions in the slabs, and that the slab size determines the type of magnetic order, which is either ferromagnetic or antiferromagnetic. Dynamical mean-field theory calculations reveal the orbitally selective Mott state of the Fe ions and tendency of conductivity to low-dimensional behavior with particular enhancement along the 1D chains. Across the series, the decoupling of the chains increases, and so with the inherent charge ordering of the slabs, these structures have the potential to allow experimental realization of the model system of coupled 1D wires. We point out the possibility to stabilize these compounds in the thin-film form that, together with a wide range of possible ionic substitutions and fact that these compounds are recoverable at ambient pressure, makes them a very promising platform to engineer physical systems with interesting magnetotransport phenomena, as corroborated by the recent discovery of quantum Hall effect in ZrTe$_5$.