论文标题

临界旋转链中的麦内型和纠缠

Ergotropy and entanglement in critical spin chains

论文作者

Mula, Begoña, Fernández, Eva M., Alvarellos, José E., Fernández, Julio J., García-Aldea, David, Santalla, Silvia N., Rodríguez-Laguna, Javier

论文摘要

纠缠基态的子系统处于混合状态。因此,如果我们将该子系统与周围环境隔离开来,我们可能能够提取应用统一转换的工作,最大程度称为麦角属。一旦提取了这项工作,子系统仍将在其局部基态以上包含一些界限,这些能量可以提供有关纠缠结构的有价值的信息。我们表明,随着纠缠熵的平方除以链长的平方,对大型系统的长度的平方的结合能量衰减,因此对于大型系统尺寸而言接近零,我们猜测这种关系对于所有一维临界状态都持有。

A subsystem of an entangled ground state is in a mixed state. Thus, if we isolate this subsystem from its surroundings we may be able to extract work applying unitary transformations, up to a maximal amount which is called ergotropy. Once this work has been extracted, the subsystem will still contain some bound energy above its local ground state, which can provide valuable information about the entanglement structure. We show that the bound energy for half a free fermionic chain decays as the square of the entanglement entropy divided by the chain length, thus approaching zero for large system sizes, and we conjecture that this relation holds for all 1D critical states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源