论文标题

带有风味障碍的宽云高的频谱,$ d = 3 $

Spectrum of a Gross-Neveu Yukawa model with flavor disorder in $d=3$

论文作者

Prakash, Shiroman

论文摘要

我们表明,具有混乱的Yukawa模型的一种变体为Sachdev-Ye Kitaev(SYK)模型提供了三个维度的真实,非对称的概括。该模型包含$ M $真实的标量字段和$ n $ dirac(或Majoraana)费米子,通过Yukawa的互动与当地的高斯随机耦合在三个维度上进行交互。在$ m $和$ n $的限制中,固定的比率$ m/n $是固定的,该模型定义了由$ m/n $参数参数的红外固定点线,当$ m/n = 0 $时,将其降低到gross-neveu vector模型。当$ m/n $非零时,该模型由旋速图主导,并引起类似Syk的物理学。我们在理论上计算单个跟踪操作员的频谱,并发现对于$ m/n $的所有值都是真实的。

We show that a variant of the Gross-Neveu Yukawa model with disorder provides a real, nonsupersymmetric generalization of the Sachdev-Ye Kitaev (SYK) model to three dimensions. The model contains $M$ real scalar fields and $N$ Dirac (or Majorana) fermions, interacting via a Yukawa interaction with a local Gaussian random coupling in three dimensions. In the limit where $M$ and $N$ are both large, and the ratio $M/N$ is held fixed, the model defines a line of infrared fixed points parametrized by $M/N$, reducing to the Gross-Neveu vector model when $M/N=0$. When $M/N$ is nonzero, the model is dominated by melonic diagrams and gives rise to SYK-like physics. We compute the spectrum of single-trace operators in the theory, and find that it is real for all values of $M/N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源