论文标题
宇宙射线逃离垂直磁场中的垂直冲击
Escape of cosmic rays from perpendicular shocks in the circumstellar magnetic field
论文作者
论文摘要
我们研究了宇宙射线(CRS)的逃逸过程,从垂直冲击区域的球形冲击区域传播到带有Parker-Spiral磁场的偶然介质的河流冲击区域。超新星残留物(SNR)垂直冲击的扩散冲击加速度预计将在没有上游磁场扩增的情况下加速CRS到PEV。红色超级巨人(RSG)和狼射线(WR)明星被认为是这项工作的祖细胞。我们执行测试粒子模拟,以研究逃逸过程和逃生限制的最大能量,而无需磁场放大,在上游区域中,使用RSG和WR恒星预期的磁场强度和旋转周期。我们表明,沿赤道或极点移动时,粒子逃到了远的上游区域,当SNRS传播到RSGS和WR星的自由风区时,最大能量约为10-100〜 {\ rm TEV} $。在大多数情况下,逃逸限制的最大能量由赤道和极点之间的电势差给出。如果祖细胞是倾斜的旋转器,而SNR在超新星爆炸后的早期阶段,则逃生限制的最大能量受波浪状电流板的半波长的限制。此外,对于RSG,我们表明,如果大多数RSG在大多数RSG中持续强大的磁场强度,则在风区加速CRS的光度足以为观察到的CR通量提供高于$ 10〜 {\ rm TEV} $。就CR发光度而言,SNRS传播到WR恒星的自由风可能会导致PEV CRS。只要在SNR冲击周围没有磁场放大作用,最大能量是由风区域的磁场强度决定的,这取决于旋转周期,恒星风以及RSG和WR恒星的表面磁场。因此,我们需要观察这些数量以了解CR的起源。
We investigate the escape process of cosmic rays (CRs) from perpendicular shock regions of a spherical shock propagating to a circumstellar medium with the Parker-spiral magnetic field. The diffusive shock acceleration in perpendicular shocks of supernova remnants (SNRs) is expected to accelerate CRs up to PeV without upstream magnetic field amplification. Red supergiants (RSGs) and Wolf-Rayet (WR) stars are considered as progenitors in this work. We perform test particle simulations to investigate the escape process and escape-limited maximum energy without magnetic field amplification in the upstream region, where the magnetic field strength and rotation period expected from observations of RSGs and WR stars are used. We show that particles escape to the far upstream region while moving along the equator or poles and the maximum energy is about $10-100~{\rm TeV}$ when SNRs propagate to free wind regions of RSGs and WR stars. In most cases, the escape-limited maximum energy is given by the potential difference between the equator and pole. If progenitors are oblique rotators and SNRs are in the early phase just after the supernova explosion, the escape-limited maximum energy is limited by the half wavelength of the wavy current sheet. In addition, for RSGs, we show that the luminosity of CRs accelerated in the wind region is sufficient to supply the observed CR flux above $10~{\rm TeV}$ if a strong magnetic field strength is sustained in most RSGs. In terms of the CR luminosity, SNRs propagating to the free wind of WR stars can contribute to PeV CRs. As long as no magnetic field amplification works around SNR shocks, the maximum energy is decided by the magnetic field strength in the wind region, which depends on the rotation period, stellar wind, and surface magnetic field of RSGs and WR stars. Therefore, we need to observe these quantities to understand the origin of CRs.