论文标题

非线性差分系统的温和解决方案的新概念,涉及较高阶层的Riemann-Liouville衍生物,并具有非持续冲动

New notion of mild solutions for nonlinear differential systems involving Riemann-Liouville derivatives of higher order with non-instantaneous impulses

论文作者

Sahijwani, Lavina, Sukavanam, N.

论文摘要

该人工制品致力于检查涉及具有较高阶段和固定下限的Riemann-Liouville衍生物的非线性分数差分系统,包括存在和唯一性的非持续冲动,在Banach空间中会导致。本文的动机是设定足够的条件,以确保在巴拉赫空间中存在轻度溶液。首先,根据脉冲功能选择适当的积分类型初始条件。相关系统的轻度解决方案是使用分数分解构建的。随后,在利用固定点方法的充分假设下建立了存在和唯一性结果。结束时,提出了一个示例,以验证提出的方法。

The artefact is dedicated towards the inspection of nonlinear fractional differential systems involving Riemann-Liouville derivative with higher order and fixed lower limit, including non-instantaneous impulses for existence and uniqueness results in Banach spaces. The motive of the paper is to set sufficient conditions to guarantee the existence of mild solution in Banach spaces. Firstly, appropriate integral type initial conditions depending on the impulsive functions are chosen at suitable points. A mild solution of the concerned system is constructed using fractional resolvent. Subsequently, existence and uniqueness results are established under sufficient assumptions utilizing fixed point approach. An example is presented at the end to validate the methodology proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源