论文标题

使用蒙特卡洛方法的强大输出分析

Robust Output Analysis with Monte-Carlo Methodology

论文作者

Vahdat, Kimia, Shashaani, Sara

论文摘要

在通过模拟或机器学习的预测建模中,至关重要的是通过输出分析准确评估估计值的质量。近几十年来,输出分析已富含量化输入数据不确定性在模型输出中增加鲁棒性的影响的方法。但是,假设输入数据遵守参数分布家族,则大多数开发是适用的。我们提出了一个统一的输出分析框架,用于通过蒙特卡洛采样镜头进行模拟和机器学习输出。该框架提供了具有高阶精度在输出中引起的方差和偏差的非参数量化。我们从模型输出的新偏差校正估计利用了快速迭代的引导抽样和高阶影响功能的扩展。对于提出的估计方法的可伸缩性,我们设计了预算最佳的规则,并利用了减少方差的控制变体。我们的理论和数值结果证明了从模型输出更高的覆盖率概率的模型输出中建立更强大的置信区间的明显优势。

In predictive modeling with simulation or machine learning, it is critical to accurately assess the quality of estimated values through output analysis. In recent decades output analysis has become enriched with methods that quantify the impact of input data uncertainty in the model outputs to increase robustness. However, most developments are applicable assuming that the input data adheres to a parametric family of distributions. We propose a unified output analysis framework for simulation and machine learning outputs through the lens of Monte Carlo sampling. This framework provides nonparametric quantification of the variance and bias induced in the outputs with higher-order accuracy. Our new bias-corrected estimation from the model outputs leverages the extension of fast iterative bootstrap sampling and higher-order influence functions. For the scalability of the proposed estimation methods, we devise budget-optimal rules and leverage control variates for variance reduction. Our theoretical and numerical results demonstrate a clear advantage in building more robust confidence intervals from the model outputs with higher coverage probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源