论文标题

在里曼尼亚语中,避免障碍问题的对称性减少

Reduction by Symmetry in Obstacle Avoidance Problems on Riemannian Manifolds

论文作者

Goodman, Jacob R., Colombo, Leonardo J.

论文摘要

本文研究了通过对称性避免障碍物问题的对称性的减少。在具有剩余的不变度量的谎言组的情况下,我们得出了减少的必要条件,并通过考虑以谎言组水平束上的连接而编写的替代变异问题,以实现其相应的riemannian同质空间。许多特殊情况可以详细研究可以显式计算障碍潜力的特殊情况,并且这些想法适用于以$(3)$和单位球体$ s^2 $进化的刚体避免障碍的任务。

This paper studies the reduction by symmetry of a variational obstacle avoidance problem. We derive the reduced necessary conditions in the case of Lie groups endowed with a left-invariant metric, and for its corresponding Riemannian homogeneous spaces by considering an alternative variational problem written in terms of a connection on the horizontal bundle of the Lie group. A number of special cases where the obstacle avoidance potential can be computed explicitly are studied in detail, and these ideas are applied to the obstacle avoidance task for a rigid body evolving on SO$(3)$ and for the unit sphere $S^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源