论文标题

端到端的图形受限的矢量化平面图生成全面的精炼

End-to-end Graph-constrained Vectorized Floorplan Generation with Panoptic Refinement

论文作者

Liu, Jiachen, Xue, Yuan, Duarte, Jose, Shekhawat, Krishnendra, Zhou, Zihan, Huang, Xiaolei

论文摘要

给定的用户输入的自动生成平面图在建筑设计中具有很大的潜力,最近在计算机视觉社区中探索了。但是,大多数现有方法都以栅格化图像格式合成平面图,这些图像很难编辑或自定义。在本文中,我们旨在将平面图合成为1-D向量的序列,从而简化用户的互动和设计自定义。为了产生高保真矢量化的平面图,我们提出了一个新颖的两阶段框架,包括草稿阶段和多轮精炼阶段。在第一阶段,我们使用图形卷积网络(GCN)编码用户的房间连接图输入,然后应用自动回归的变压器网络以生成初始平面图。为了抛光最初的设计并产生更具视觉吸引力的平面图,我们进一步提出了一个由GCN和变压器网络组成的新型全景精炼网络(PRN)。 PRN将初始生成的序列作为输入,并完善了平面图设计,同时通过我们提出的几何损失鼓励正确的房间连接。我们已经在现实世界中的地板数据集上进行了广泛的实验,结果表明,我们的方法在不同的设置和评估指标下实现了最先进的性能。

The automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源