论文标题
谐振语音晶体中BLOCH波的分析解:深度下波长的能量分裂和模式在拓扑保护的界面和边缘状态之间转向
Analytical solutions for Bloch waves in resonant phononic crystals: Deep subwavelength energy splitting and mode steering between topologically protected interfacial and edge states
论文作者
论文摘要
我们根据奇异的绿色功能得出分析溶液,该溶液可以有效地计算通过弹性板传播的波的散射模拟或floquet-bloch分散关系,其表面是由弹性梁的周期性阵列对其进行图案化的。我们的方法具有多功能性,使我们能够解决有关每个原始细胞的排列的一系列问题,而不是布拉格到深波长尺度。我们对有限元数值模拟进行了交叉验证,以进一步对我们的方法获得信心,这依赖于Euler-Bernoulli梁理论的假设大大简化了连续性条件,以至于可以用点力和施加到板的中性平面的点力和力矩代替。通过傅立叶序列或傅立叶进行的曲调函数的表示很容易随之而来,得出了快速,准确的分析方案。按照Quantum Valley Hall效应的语音类似物(QVHE)的语音类似物(QVHE),从具有破裂的空间对称性的原始细胞(QVHE)的语音类似物(QVHE)的语音类似物(QVHE),我们的解决方案的准确性和灵活性证明了我们解决方案的准确性和灵活性。在拓扑保护的状态下产生并共存:毗邻手性的散装培养基与一种此类手性散装与周围裸露的弹性板之间的界面,从而使拓扑回路可以通过强大的波动设计;这些在拓扑上的非平凡状态存在于音调晶体的组成梁的弯曲谐振范围内,因此可以将其调节为深波长度。
We derive analytical solutions based on singular Green's functions, which enable efficient computations of scattering simulations or Floquet-Bloch dispersion relations for waves propagating through an elastic plate, whose surface is patterned by periodic arrays of elastic beams. Our methodology is versatile and allows us to solve a range of problems regarding arrangements of multiple beams per primitive cell, over Bragg to deep-subwavelength scales; we cross-verify against finite element numerical simulations to gain further confidence in our approach, which relies upon the hypothesis of Euler-Bernoulli beam theory considerably simplifying continuity conditions such that each beam can be replaced by point forces and moments applied to the neutral plane of the plate. The representations of Green's functions by Fourier series or Fourier transforms readily follows, yielding rapid and accurate analytical schemes. The accuracy and flexibility of our solutions are demonstrated by engineering topologically non-trivial states, from primitive cells with broken spatial symmetries, following the phononic analogue of the Quantum Valley Hall Effect (QVHE). Topologically protected states are produced and coexist along: interfaces between adjoining chiral-mirrored bulk media and edges between one such chiral bulk and the surrounding bare elastic plate, allowing topological circuits to be designed with robust waveguiding; these topologically non-trivial states exist within near flexural resonances of the constituent beams of the phononic crystal, and hence can be tuned into a deep-subwavelength regime.