论文标题

基于进化算法的分配学习辅助深度神经网络,以实现不平衡的图像分类

Distribution Learning Based on Evolutionary Algorithm Assisted Deep Neural Networks for Imbalanced Image Classification

论文作者

Zhao, Yudi, Hao, Kuangrong, Gu, Chaochen, Wei, Bing

论文摘要

为了解决不平衡分类任务中生成图像的质量多样性的权衡问题,我们研究了功能级别的基于过度采样的方法,而不是数据级别,并专注于搜索潜在特征空间以进行最佳分布。在此基础上,我们提出了改进的基于潜在特征分布演化(MEDA_LUDE)算法的改进的估计分布算法,其中对联合学习程序进行了编程,以使深层神经网络和进化算法分别优化和进化。我们根据样品之间的相似性,探讨了大幅度高卢混合物(L-GM)损失功能对分配学习和设计专业健身函数的影响。基于基准的不平衡数据集的广泛实验验证了我们提出的算法的有效性,该算法可以生成具有质量和多样性的图像。此外,MEDA_LUDE算法还应用于工业领域,并成功地减轻了织物缺陷分类中的不平衡问题。

To address the trade-off problem of quality-diversity for the generated images in imbalanced classification tasks, we research on over-sampling based methods at the feature level instead of the data level and focus on searching the latent feature space for optimal distributions. On this basis, we propose an iMproved Estimation Distribution Algorithm based Latent featUre Distribution Evolution (MEDA_LUDE) algorithm, where a joint learning procedure is programmed to make the latent features both optimized and evolved by the deep neural networks and the evolutionary algorithm, respectively. We explore the effect of the Large-margin Gaussian Mixture (L-GM) loss function on distribution learning and design a specialized fitness function based on the similarities among samples to increase diversity. Extensive experiments on benchmark based imbalanced datasets validate the effectiveness of our proposed algorithm, which can generate images with both quality and diversity. Furthermore, the MEDA_LUDE algorithm is also applied to the industrial field and successfully alleviates the imbalanced issue in fabric defect classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源