论文标题

三百个项目:一种从模拟Sunyaev-Zel'Dovich地图推断出星系群体径向轮廓群的机器学习方法

The Three Hundred project: A Machine Learning method to infer clusters of galaxies mass radial profiles from mock Sunyaev-Zel'dovich maps

论文作者

Ferragamo, A., de Andres, D., Sbriglio, A., Cui, W., De Petris, M., Yepes, G., Dupuis, R., Jarraya, M., Lahouli, I., De Luca, F., Gianfagna, G., Rasia, E.

论文摘要

我们开发了一种机器学习算法,以从热sunyaev-zel'dovich效应图中推断出星系簇中总气体和气体质量的3D累积径向谱。我们使用Redshift $ z <0.12 $的2,522个模拟群集从\ TheThreeHund百万{}项目中生成大约73,000个模拟图像,并训练将自动编码器和随机森林结合在一起的型号。在没有对簇的静水平衡的任何先前假设的情况下,该模型能够重建总质量谱以及气体质量概况,这是导致SZ效应的原因。我们表明,恢复的配置文件公正,散布约$ 10 \%$,略微增加了集群的核心和郊区。我们在$ 10^{13.5} \ leq m_ {200} /(\ hmsun)\ leq 10^{15.5} $的质量范围内选择了群集,跨越不同的动态状态,从放松到干扰的光晕。我们验证该方法的准确性和精度是否显示出对动力学状态的略有依赖性,但对群集质量却没有。为了进一步验证我们的模型的一致性,我们使用NFW模型符合推断的总质量曲线,并将浓度值与真实曲线的浓度值进行对比。我们注意到,推断的概况对于更高的浓度值没有偏见,从而重现了值得信赖的质量浓度关系。与广泛使用的质量估计技术(例如静水平衡)的比较表明,我们的方法恢复了不受气体非热运动偏见的总质量。

We develop a machine learning algorithm to infer the 3D cumulative radial profiles of total and gas mass in galaxy clusters from thermal Sunyaev-Zel'dovich effect maps. We generate around 73,000 mock images along various lines of sight using 2,522 simulated clusters from the \thethreehundred{} project at redshift $z< 0.12$ and train a model that combines an autoencoder and a random forest. Without making any prior assumptions about the hydrostatic equilibrium of the clusters, the model is capable of reconstructing the total mass profile as well as the gas mass profile, which is responsible for the SZ effect. We show that the recovered profiles are unbiased with a scatter of about $10\%$, slightly increasing towards the core and the outskirts of the cluster. We selected clusters in the mass range of $10^{13.5} \leq M_{200} /(\hMsun) \leq 10^{15.5}$, spanning different dynamical states, from relaxed to disturbed halos. We verify that both the accuracy and precision of this method show a slight dependence on the dynamical state, but not on the cluster mass. To further verify the consistency of our model, we fit the inferred total mass profiles with an NFW model and contrast the concentration values with those of the true profiles. We note that the inferred profiles are unbiased for higher concentration values, reproducing a trustworthy mass-concentration relation. The comparison with a widely used mass estimation technique, such as hydrostatic equilibrium, demonstrates that our method recovers the total mass that is not biased by non-thermal motions of the gas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源