论文标题

$ b $ - 接触结构的存在和分类

Existence and classification of $b$-contact structures

论文作者

Cardona, Robert, Oms, Cédric

论文摘要

A $ b $ - 连接结构在$ b $ -manifold $(m,z)$上是$ m $上的雅各比结构,满足了沿Hypersurface $ z $的横向条件。我们表明,在三个维度上,具有$ b $的连接结构具有明显的三维叶子满足存在$ h $ - 原文,该结构允许开处方诱导的奇异叶面。我们提供了一种在给定的$ b $ manifold上对$ b $ - 接触结构进行分类的方法,并用它将$ s^3 $分类与两个尖峰或未结开的圆环作为关键表面。我们还讨论了更高维度的概括。

A $b$-contact structure on a $b$-manifold $(M,Z)$ is a Jacobi structure on $M$ satisfying a transversality condition along the hypersurface $Z$. We show that, in three dimensions, $b$-contact structures with overtwisted three-dimensional leaves satisfy an existence $h$-principle that allows prescribing the induced singular foliation. We give a method to classify $b$-contact structures on a given $b$-manifold and use it to give a classification on $S^3$ with either a two-sphere or an unknotted torus as the critical surface. We also discuss generalizations to higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源