论文标题

平均强大的优化

Mean Robust Optimization

论文作者

Wang, Irina, Becker, Cole, Van Parys, Bart, Stellato, Bartolomeo

论文摘要

强大的优化是一种在不确定性下进行决策的一种可及其表达的技术,但是当对不确定参数做出悲观的假设时,它可能导致过于保守的决策。 Wasserstein分布在强大的优化方面可以通过数据驱动来减少保守主义,但通常会导致溶液时间过度的大问题。我们介绍了平均强大的优化,这是一个通用框架,通过在计算努力和保守主义之间提供权衡取舍来结合两全其美的一般框架。我们提出了基于群集数据而不是直接基于观察到的数据点构建的不确定性集,从而大大减少了问题大小。通过改变簇的数量,我们的方法桥梁在鲁棒和瓦斯汀分布之间在强大的优化方面。我们显示有限样本的性能保证,并明确控制任何聚类程序引入的潜在额外悲观主义。此外,我们证明了当不确定性在约束中线性进入时,聚类不会影响最佳解决方案。我们在几个数值示例上说明了我们方法的效率和性能保留,从而在解决方案时间中获得了多个数量级加速度,对解决方案质量几乎没有影响。

Robust optimization is a tractable and expressive technique for decision-making under uncertainty, but it can lead to overly conservative decisions when pessimistic assumptions are made on the uncertain parameters. Wasserstein distributionally robust optimization can reduce conservatism by being data-driven, but it often leads to very large problems with prohibitive solution times. We introduce mean robust optimization, a general framework that combines the best of both worlds by providing a trade-off between computational effort and conservatism. We propose uncertainty sets constructed based on clustered data rather than on observed data points directly thereby significantly reducing problem size. By varying the number of clusters, our method bridges between robust and Wasserstein distributionally robust optimization. We show finite-sample performance guarantees and explicitly control the potential additional pessimism introduced by any clustering procedure. In addition, we prove conditions for which, when the uncertainty enters linearly in the constraints, clustering does not affect the optimal solution. We illustrate the efficiency and performance preservation of our method on several numerical examples, obtaining multiple orders of magnitude speedups in solution time with little-to-no effect on the solution quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源