论文标题
使用高分辨率微分解来自信检测前列腺癌
Towards Confident Detection of Prostate Cancer using High Resolution Micro-ultrasound
论文作者
论文摘要
动机:在超声引导活检期间检测前列腺癌很具有挑战性。癌症的高度异质外观,超声伪像的存在和噪声都导致了这些困难。高频超声成像的最新进展 - 微拆卸 - 在高分辨率下大大提高了组织成像的能力。我们的目的是研究专门针对微型启动引导的前列腺癌活检的强大深度学习模型的发展。对于临床采用的模型,一个关键的挑战是设计一个可以确保癌症的解决方案,同时通过对引入弱标签的活检样品的粗糙组织病理学测量来学习。方法:我们使用了从194例接受了前列腺活检的患者中获得的微型图像的数据集。我们使用共同教学范式训练一个深层模型,以处理标签中的噪声,以及一种证据深度学习方法进行不确定性估计。我们使用准确性与信心的临床相关指标评估了模型的性能。结果:我们的模型实现了对预测不确定性的良好估计,而面积为88 $ \%$。在组合组合中使用共同教学和证据深度学习的不确定性估计明显优于任何一种。在不确定性估计中,我们还提供了与最先进的比较。
MOTIVATION: Detection of prostate cancer during transrectal ultrasound-guided biopsy is challenging. The highly heterogeneous appearance of cancer, presence of ultrasound artefacts, and noise all contribute to these difficulties. Recent advancements in high-frequency ultrasound imaging - micro-ultrasound - have drastically increased the capability of tissue imaging at high resolution. Our aim is to investigate the development of a robust deep learning model specifically for micro-ultrasound-guided prostate cancer biopsy. For the model to be clinically adopted, a key challenge is to design a solution that can confidently identify the cancer, while learning from coarse histopathology measurements of biopsy samples that introduce weak labels. METHODS: We use a dataset of micro-ultrasound images acquired from 194 patients, who underwent prostate biopsy. We train a deep model using a co-teaching paradigm to handle noise in labels, together with an evidential deep learning method for uncertainty estimation. We evaluate the performance of our model using the clinically relevant metric of accuracy vs. confidence. RESULTS: Our model achieves a well-calibrated estimation of predictive uncertainty with area under the curve of 88$\%$. The use of co-teaching and evidential deep learning in combination yields significantly better uncertainty estimation than either alone. We also provide a detailed comparison against state-of-the-art in uncertainty estimation.