论文标题
$ j $ - 因子估计矮球星系的宇宙学先验
Cosmological prior for the $J$-factor estimation of dwarf spheroidal galaxies
论文作者
论文摘要
矮球星系(DSPHS)的暗物质光环在暗物质检测中起重要作用。通常,我们使用DSPH的运动学方程来估算光晕曲线,但是Halo曲线具有较大的不确定性,因为我们只有有限数量的运动学数据集。在本文中,我们利用暗物质Subhalos的宇宙学模型在DSPHS的光晕概况上获得更好的限制。这些约束被认为是两个宇宙学先验:卫星先验,基于Subhalos的积聚史的半分析模型及其潮汐剥离效果,以及恒星至Halo质量关系的先验,该模型估计了使用经验性的相关质量的恒星质量的星系的光环质量。此外,我们通过考虑速度分散曲线来采用径向依赖性的可能性函数,这使我们能够使用带有平均分散体的径向独立可能性函数来减轻上一个分析中的参数退化。使用这些先验,我们估计了在8个经典和27个超级dsphs的利益区域(所谓的$ j $ factor)上集成的平方暗物质密度。与以前的径向独立分析相比,我们的方法大大降低了$ j $ factor的不确定性(约为$ 20 \%$)。我们通过评估不同模型设置的贝叶斯因素来确认$ J $因素估计的模型依赖性,并发现即使假设不同的宇宙学模型,估计值仍然稳定。
Dark matter halos of dwarf spheroidal galaxies (dSphs) play important roles in dark matter detection. Generally we estimate the halo profile using a kinematical equation of dSphs but the halo profile has a large uncertainty because we have only a limited number of kinematical dataset. In this paper, we utilize cosmological models of dark matter subhalos to obtain better constraints on halo profile of dSphs. The constraints are realized as two cosmological priors: satellite prior, based on a semi-analytic model of the accretion history of subhalos and their tidal stripping effect, and stellar-to-halo mass relation prior, which estimates halo mass of a galaxy from its stellar mass using empirical correlations. In addition, we adopt a radial dependent likelihood function by considering velocity dispersion profile, which allows us to mitigate the parameter degeneracy in the previous analysis using a radial independent likelihood function with averaged dispersion. Using these priors, we estimate the squared dark matter density integrated over the region-of-interest (so-called $J$-factor) of 8 classical and 27 ultra-faint dSphs. Our method significantly decreases the uncertainty of $J$-factors (upto about $20\%$) compared to the previous radial independent analysis. We confirm the model dependence of $J$-factor estimates by evaluating Bayes factors of different model setups and find that the estimates are still stable even when assuming different cosmological models.