论文标题
一项针对物理知识神经网络的非自适应和基于残余的自适应自适应抽样的全面研究
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
论文作者
论文摘要
物理知识的神经网络(PINN)已证明是解决部分微分方程(PDE)的前进和反问题的有效工具。 PINN将PDE嵌入神经网络的丢失中,并在一组散射的残留点上评估了该PDE损失。这些点的分布对于PINN的性能非常重要。但是,在现有的针对PINN的研究中,仅使用了一些简单的残差抽样方法。在这里,我们介绍了两类采样的全面研究:非自适应均匀抽样和适应性非均匀抽样。我们考虑了六个均匀的采样,包括(1)稳定的均匀网格,(2)均匀随机采样,(3)拉丁语超立方体采样,(4)Halton序列,(5)Hammersley序列和(6)Sobol序列。我们还考虑了用于均匀抽样的重采样策略。为了提高采样效率和PINN的准确性,我们提出了两种新的基于残差的自适应抽样方法:基于残留的自适应分布(RAD)和基于残留的自适应改进,并具有分布分布(RAR-D),它们基于训练期间的PDE残留物,动态地改善了残差分布。因此,我们考虑了总共10种不同的抽样方法,包括6种非自适应均匀抽样,重采样的均匀抽样,两种提议的自适应抽样和现有的自适应抽样。我们广泛测试了这些抽样方法在许多设置中的四个正向问题和两个反问题的性能。我们在本研究中提出的数值结果总结了6000多个PINN的模拟。我们表明,RAD和RAR-D的提议的自适应采样方法显着提高了PINN的准确性,其残留点较少。在这项研究中获得的结果也可以用作选择抽样方法的实用指南。
Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.