论文标题

扩展滑坡速度和分析阻力

Extended landslide velocity and analytical drag

论文作者

Pudasaini, Shiva P.

论文摘要

滑坡速度在估计影响力和破坏区域中起主要作用。在这里,基于Pudasaini和Krautblatter(2022),我开发了一种新型的扩展滑坡速度模型,其中包括由液压梯度诱导的力,该力被所有现有的分析型滑坡速度模型所忽略。通过这种力量和惯性之间的严格转换,我开发了两个期望产生相同结果的同伴系统。但是,这与我们的传统智慧相矛盾。这就提出了一个问题,即我们是否应该开发一些新的平衡方程。我比较了忽略并包括液压梯度引起的力的两个速度模型。这两个系统产生的分析解决方案不同。新模型是全面的,优雅的,却是非凡的发展,因为它揭示了偶然的情况,导致压力宣传 - 偏见。令人惊讶的是,质量首先在上游移动,然后向后弯曲并加速下坡。随着与液压梯度相关的力增加,扩展和简单溶液之间的差异强烈扩大,这表明其重要性。粘性阻力在控制滑坡动力学中起着重要作用。但是,对此不存在明确的机械和分析模型。优雅形式的新速度方程式的仔细智慧导致了一种机械广泛的,动态发展的分析模型,用于粘性阻力,这是第一个。构建了无量纲的阻力号。与普遍的做法相反,我证明,阻力对于不断扩展和签约动作而言是一种完全新颖的看法。阻力系数接近经常使用的经验或数值。但是,现在,我为质量流仿真中的阻力提供了创新的,身体基础的分析模型。

The landslide velocity plays a dominant role in estimating impact force and devastated area. Here, based on Pudasaini and Krautblatter (2022), I develop a novel extended landslide velocity model that includes the force induced by the hydraulic pressure gradient which was neglected by all the existing analytical landslide velocity models. By a rigorous conversion between this force and inertia, I develop two peer systems expecting to produce the same results. However, this contradicts with our conventional wisdom. This raises a question of whether we should develop some new balance equations. I compare the two velocity models that neglects and includes the force induced by the hydraulic pressure gradient. Analytical solutions produced by the two systems are different. The new model is comprehensive, elegant, and yet an extraordinary development as it reveals serendipitous circumstances resulting in a pressure-inertia-paradox. Surprisingly, the mass first moves upstream, then it winds back and accelerates downslope. The difference between the extended and simple solution widens strongly as the force associated with the hydraulic pressure gradient increases, demonstrating its importance. Viscous drag plays an important role in controlling the landslide dynamics. However, no explicit mechanical and analytical model exists for this. The careful sagacity of the graceful form of new velocity equation results in a mechanically extensive, dynamically evolving analytical model for viscous drag, the first of this kind. A dimensionless drag number is constructed. Contrary to the prevailing practices, I have proven that drags are essentially different for the expanding and contracting motions, an entirely novel perception. Drag coefficients are close to the often used empirical or numerical values. But, now, I offer an innovative, physically-founded analytical model for drag in mass flow simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源