论文标题
Janus和Hades在M理论中
Janus and Hades in M-theory
论文作者
论文摘要
四维$ \,\ textrm {ads} _ {3} \ times \ Mathbb {r} \,$(janus)和$ \,\ \ \ textrm {ads {ads {ads {3} _ {3} {3} \,\,\ \,\,\ m m iantution, SO(8)测量的超级重力是由$ \,\ textrm {s}^7 \,$持续减少11维超级的。该解决方案通常是非苏匹马对称的,涉及非平凡的跑步标量,并保留$ \,\ textrm {u}(1)^4 \,$对称。 (超级)对称性增强的不同模式在适当调整自由参数后会进一步控制运行标量的边界条件。我们专注于具有$ \,\ textrm {su}(3)(3)\ times \ textrm {u}(1)^2 \,$对称性的非苏匹马对称性Janus和Hades解决方案,并根据M-Theory Fluxes and Membranes提供了更高维度的描述。特别注意一类称为“山脊流”的Hades解决方案,类似于先前在文献中研究过的库仑分支流的介电旋转。
Multi-parametric and analytic families of four-dimensional $\,\textrm{AdS}_{3} \times \mathbb{R}\,$ (Janus) and $\,\textrm{AdS}_{3} \,\times\, \mathbb{R}^{+}$ (Hades) solutions are constructed in the SO(8) gauged supergravity that arises from the consistent reduction of eleven-dimensional supergravity on $\,\textrm{S}^7\,$. The solutions are generically non-supersymmetric, involve non-trivial running scalars and preserve a $\,\textrm{U}(1)^4\,$ symmetry. Different patterns of (super) symmetry enhancement occur upon suitable adjustment of the free parameters which further control the boundary conditions of the running scalars. We concentrate on the non-supersymmetric Janus and Hades solutions with $\,\textrm{SU}(3) \times \textrm{U}(1)^2\,$ symmetry and provide their higher-dimensional description in terms of M-theory fluxes and membranes. Special attention is paid to a class of such Hades solutions dubbed "ridge flows" which resemble dielectric rotations of Coulomb branch flows previously investigated in the literature.