论文标题

自学可以是一个很好的几次学习者

Self-Supervision Can Be a Good Few-Shot Learner

论文作者

Lu, Yuning, Wen, Liangjian, Liu, Jianzhuang, Liu, Yajing, Tian, Xinmei

论文摘要

现有的少量学习(FSL)方法依赖于具有大型标记数据集的培训,这阻止了它们利用丰富的未标记数据。从信息理论的角度来看,我们提出了一种有效的无监督的FSL方法,并以自学的方式学习表示。遵循信息原理,我们的方法通过捕获数据的内在结构来学习全面的表示。具体而言,我们以低偏置MI估计器的实例及其表示的相互信息(MI)最大化,以执行自我监督的预训练。我们的自我监督模型对所见类别的可区分特征而不是监督预训练,而是对所见类别的偏见较少,从而更好地概括了看不见的阶级。我们解释说,受监督的预训练和自我监督的预训练实际上正在最大化不同的MI目标。进一步进行了广泛的实验,以通过各种培训设置分析其FSL性能。令人惊讶的是,结果表明,在适当条件下,自我监管的预训练可以优于监督预训练。与最先进的FSL方法相比,我们的方法可以在不使用基本类别的任何标签的FSL基准上实现可比的性能。

Existing few-shot learning (FSL) methods rely on training with a large labeled dataset, which prevents them from leveraging abundant unlabeled data. From an information-theoretic perspective, we propose an effective unsupervised FSL method, learning representations with self-supervision. Following the InfoMax principle, our method learns comprehensive representations by capturing the intrinsic structure of the data. Specifically, we maximize the mutual information (MI) of instances and their representations with a low-bias MI estimator to perform self-supervised pre-training. Rather than supervised pre-training focusing on the discriminable features of the seen classes, our self-supervised model has less bias toward the seen classes, resulting in better generalization for unseen classes. We explain that supervised pre-training and self-supervised pre-training are actually maximizing different MI objectives. Extensive experiments are further conducted to analyze their FSL performance with various training settings. Surprisingly, the results show that self-supervised pre-training can outperform supervised pre-training under the appropriate conditions. Compared with state-of-the-art FSL methods, our approach achieves comparable performance on widely used FSL benchmarks without any labels of the base classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源