论文标题

盒子监督实例细分,设置级别的演变

Box-supervised Instance Segmentation with Level Set Evolution

论文作者

Li, Wentong, Liu, Wenyu, Zhu, Jianke, Cui, Miaomiao, Hua, Xiansheng, Zhang, Lei

论文摘要

与使用像素面罩标签的完全监督的方法相反,盒子监督实例细分利用了简单的盒子注释,该盒子最近吸引了许多研究注意力。在本文中,我们提出了一种新颖的单次盒子监督实例分割方法,该方法将经典级别设置模型与深度神经网络精致整合在一起。具体而言,我们提出的方法迭代地通过端到端的方式通过基于Chan-Vese的连续能量功能来学习一系列级别集。一个简单的掩码监督的SOLOV2模型可改用,以预测实例感知的掩码映射为每个实例的级别设置。输入图像及其深度特征均被用作输入数据来发展级别集曲线,其中使用盒子投影函数来获得初始边界。通过最大程度地减少完全可分化的能量函数,在其相应的边界框注释中迭代优化了每个实例的级别设置。在四个具有挑战性的基准上的实验结果表明,在各种情况下,我们提出的强大实例分割方法的领先表现。该代码可在以下网址提供:https://github.com/liwentomng/boxlevelset。

In contrast to the fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of the simple box annotations, which has recently attracted a lot of research attentions. In this paper, we propose a novel single-shot box-supervised instance segmentation approach, which integrates the classical level set model with deep neural network delicately. Specifically, our proposed method iteratively learns a series of level sets through a continuous Chan-Vese energy-based function in an end-to-end fashion. A simple mask supervised SOLOv2 model is adapted to predict the instance-aware mask map as the level set for each instance. Both the input image and its deep features are employed as the input data to evolve the level set curves, where a box projection function is employed to obtain the initial boundary. By minimizing the fully differentiable energy function, the level set for each instance is iteratively optimized within its corresponding bounding box annotation. The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach to robust instance segmentation in various scenarios. The code is available at: https://github.com/LiWentomng/boxlevelset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源