论文标题
重新思考视频超分辨率变压器中的对齐
Rethinking Alignment in Video Super-Resolution Transformers
论文作者
论文摘要
相邻帧的比对被认为是视频超分辨率(VSR)中的重要操作。高级VSR模型,包括最新的VSR变形金刚,通常配备精心设计的对齐模块。但是,自我注意机制的进步可能违反了这种常识。在本文中,我们重新考虑了对齐在VSR变形金刚中的作用,并进行了几种违反直觉的观察。我们的实验表明:(i)VSR变形金刚可以直接利用来自非对齐视频的多帧信息,并且(ii)现有的对齐方法有时对VSR变形金刚有害。这些观察结果表明,我们只需删除对齐模块并采用更大的注意力窗口即可进一步提高VSR变压器的性能。然而,这样的设计将大大增加计算负担,无法处理大型动议。因此,我们提出了一种称为斑块对齐方式的新的,有效的对准方法,该方法将图像贴片而不是像素对齐。配备了补丁比对的VSR变形金刚可以在多个基准测试中证明最先进的性能。我们的工作提供了有关如何在VSR中使用多帧信息以及如何为不同网络/数据集选择对齐方法的宝贵见解。代码和模型将在https://github.com/xpixelgroup/rethinkvsralignment上发布。
The alignment of adjacent frames is considered an essential operation in video super-resolution (VSR). Advanced VSR models, including the latest VSR Transformers, are generally equipped with well-designed alignment modules. However, the progress of the self-attention mechanism may violate this common sense. In this paper, we rethink the role of alignment in VSR Transformers and make several counter-intuitive observations. Our experiments show that: (i) VSR Transformers can directly utilize multi-frame information from unaligned videos, and (ii) existing alignment methods are sometimes harmful to VSR Transformers. These observations indicate that we can further improve the performance of VSR Transformers simply by removing the alignment module and adopting a larger attention window. Nevertheless, such designs will dramatically increase the computational burden, and cannot deal with large motions. Therefore, we propose a new and efficient alignment method called patch alignment, which aligns image patches instead of pixels. VSR Transformers equipped with patch alignment could demonstrate state-of-the-art performance on multiple benchmarks. Our work provides valuable insights on how multi-frame information is used in VSR and how to select alignment methods for different networks/datasets. Codes and models will be released at https://github.com/XPixelGroup/RethinkVSRAlignment.