论文标题
Schrödinger平均序列和相关概括的急剧收敛性
Sharp convergence for sequences of Schrödinger means and related generalizations
论文作者
论文摘要
为了减少序列$ \ {t_ {n} _ {n = 1}^{\ infty} $收敛到零,我们几乎获得了schrödinger序列的几乎所有地方的收敛结果,表示$ e^{it_ {it_ {n} e}δ}δ} f $ n \ geq 2 $。收敛结果呈尖锐到端点,并且该方法还可以应用于分数schrödinger均值和非ellipticticschrödinger均值的收敛结果。
For decreasing sequences $\{t_{n}\}_{n=1}^{\infty}$ converging to zero, we obtain the almost everywhere convergence results for sequences of Schrödinger means $e^{it_{n}Δ}f$, where $f \in H^{s}(\mathbb{R}^{N}), N\geq 2$. The convergence results are sharp up to the endpoints, and the method can also be applied to get the convergence results for the fractional Schrödinger means and nonelliptic Schrödinger means.