论文标题
使用无人驾驶数据评估信号交叉的性能
Evaluating a Signalized Intersection Performance Using Unmanned Aerial Data
论文作者
论文摘要
本文提出了一种新的方法,可以使用飞行无人机收集的车辆轨迹数据在信号交叉点上计算各种有效性(MOE)。 MOE是确定信号交叉点服务质量的关键参数。具体而言,这项研究研究了在雅典,希腊繁忙的三向信号交叉点上使用无人机原始数据,并基于肺炎实验的开放数据计划。我们使用从实时视频中提取的数据进行微观方法和冲击波分析,我们估计了队列长度的最大长度,是否发生,何时以及发生溢出的位置,车辆停止,车辆旅行时间和延迟,碰撞速度,燃油消耗,CO2排放和基本图。发现各种MOE的结果很有希望,这证实了无人机收集的流量数据的使用有许多应用。我们还证明,使用无人机数据可以实时估算MOE。这样的模型可以跟踪街道网络中的单个车辆移动,因此允许建模者考虑任何交通状况,从高度不足到高度饱和条件。这些微观模型具有捕获瞬态车辆行为对各种MOE的影响的优势。
This paper presents a novel method to compute various measures of effectiveness (MOEs) at a signalized intersection using vehicle trajectory data collected by flying drones. MOEs are key parameters in determining the quality of service at signalized intersections. Specifically, this study investigates the use of drone raw data at a busy three-way signalized intersection in Athens, Greece, and builds on the open data initiative of the pNEUMA experiment. Using a microscopic approach and shockwave analysis on data extracted from realtime videos, we estimated the maximum queue length, whether, when, and where a spillback occurred, vehicle stops, vehicle travel time and delay, crash rates, fuel consumption, CO2 emissions, and fundamental diagrams. Results of the various MOEs were found to be promising, which confirms that the use of traffic data collected by drones has many applications. We also demonstrate that estimating MOEs in real-time is achievable using drone data. Such models have the ability to track individual vehicle movements within street networks and thus allow the modeler to consider any traffic conditions, ranging from highly under-saturated to highly over-saturated conditions. These microscopic models have the advantage of capturing the impact of transient vehicle behavior on various MOEs.