论文标题

随机市场游戏

Stochastic Market Games

论文作者

Schmid, Kyrill, Belzner, Lenz, Müller, Robert, Tochtermann, Johannes, Linnhoff-Popien, Claudia

论文摘要

多代理系统(例如自动驾驶或工厂)作为服务的一些最相关的应用程序显示混合动机方案,代理商可能具有相互矛盾的目标。在这些环境中,代理可能会在独立学习下的合作中学习不良的结果,例如过于贪婪的行为。在现实世界社会的动机中,在这项工作中,我们建议利用市场力量为代理人成为合作的激励措施。正如囚犯困境的迭代版本所证明的那样,拟议的市场配方可以改变游戏的动力,以始终如一地学习合作政策。此外,我们在空间和时间扩展的设置中评估了不同数量的代理的方法。我们从经验上发现,市场的存在可以通过交易活动改善总体结果和代理人的回报。

Some of the most relevant future applications of multi-agent systems like autonomous driving or factories as a service display mixed-motive scenarios, where agents might have conflicting goals. In these settings agents are likely to learn undesirable outcomes in terms of cooperation under independent learning, such as overly greedy behavior. Motivated from real world societies, in this work we propose to utilize market forces to provide incentives for agents to become cooperative. As demonstrated in an iterated version of the Prisoner's Dilemma, the proposed market formulation can change the dynamics of the game to consistently learn cooperative policies. Further we evaluate our approach in spatially and temporally extended settings for varying numbers of agents. We empirically find that the presence of markets can improve both the overall result and agent individual returns via their trading activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源