论文标题

编舞:音乐条件的自动舞蹈编舞,以一种风格和节奏一致的动态图

ChoreoGraph: Music-conditioned Automatic Dance Choreography over a Style and Tempo Consistent Dynamic Graph

论文作者

Au, Ho Yin, Chen, Jie, Jiang, Junkun, Guo, Yike

论文摘要

在时间上和美学上产生舞蹈与音乐相匹配是一个具有挑战性的问题,因为需要考虑以下因素。首先,动作和音乐传达的美学风格和信息应该是一致的。其次,生成的运动的节拍应与音乐功能进行本地一致。最后,应该观察到基本的浮雕规则,并且产生的运动应该是多种多样的。为了应对这些挑战,我们提出了编舞,该编舞可以通过动态图为给定的音乐编排高质量的舞蹈动作。提出了一种数据驱动的学习策略,以评估逐步学习的跨模式嵌入空间中音乐与运动之间的美学风格和节奏联系。运动序列将基于音乐段进行击败,然后作为动态运动图的节点合并。对兼容性因素(例如样式和节奏一致性,运动上下文连接,动作完整性和过渡平滑度)进行了全面评估,以确定图中的节点过渡。我们证明,我们的基于曲目的框架可以以美学的一致性产生动作,并且在多样性方面可扩展。定量和定性实验结果都表明,我们提出的模型优于其他基线模型。

To generate dance that temporally and aesthetically matches the music is a challenging problem, as the following factors need to be considered. First, the aesthetic styles and messages conveyed by the motion and music should be consistent. Second, the beats of the generated motion should be locally aligned to the musical features. And finally, basic choreomusical rules should be observed, and the motion generated should be diverse. To address these challenges, we propose ChoreoGraph, which choreographs high-quality dance motion for a given piece of music over a Dynamic Graph. A data-driven learning strategy is proposed to evaluate the aesthetic style and rhythmic connections between music and motion in a progressively learned cross-modality embedding space. The motion sequences will be beats-aligned based on the music segments and then incorporated as nodes of a Dynamic Motion Graph. Compatibility factors such as the style and tempo consistency, motion context connection, action completeness, and transition smoothness are comprehensively evaluated to determine the node transition in the graph. We demonstrate that our repertoire-based framework can generate motions with aesthetic consistency and robustly extensible in diversity. Both quantitative and qualitative experiment results show that our proposed model outperforms other baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源