论文标题
通过辅助空间中的gumbel-softmax采样的人类运动预测
Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an Auxiliary Space
论文作者
论文摘要
各种人类运动预测旨在预测一系列观察到的姿势的多个可能的未来姿势序列。以前的方法通常采用深层生成网络来对数据的条件分布进行建模,然后从分布中随机取得结果。尽管可以获得不同的结果,但它们通常是最有多样化的结果。最近的工作通过确定性网络明确地了解条件分布的多种模式,但是,该网络只能涵盖有限范围内的固定数量模式。在本文中,我们提出了一种新型的抽样策略,用于对深层生成模型学到的不平衡多模式分布进行采样非常多样化的结果。我们的方法通过生成辅助空间,并巧妙地从辅助空间随机进行随机采样,等于与目标分布的不同采样。我们提出了一种简单而有效的网络体系结构,该结构实现了这种新型的采样策略,该策略结合了gumbel-softmax系数矩阵采样方法和促进铰链损失函数的积极多样性。广泛的实验表明,与先前的最新采样方法相比,我们的方法显着提高了采样的多样性和准确性。代码和预训练模型可在https://github.com/droliven/diverse_sampling上找到。
Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses. Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution. While different results can be obtained, they are usually the most likely ones which are not diverse enough. Recent work explicitly learns multiple modes of the conditional distribution via a deterministic network, which however can only cover a fixed number of modes within a limited range. In this paper, we propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution learned by a deep generative model. Our method works by generating an auxiliary space and smartly making randomly sampling from the auxiliary space equivalent to the diverse sampling from the target distribution. We propose a simple yet effective network architecture that implements this novel sampling strategy, which incorporates a Gumbel-Softmax coefficient matrix sampling method and an aggressive diversity promoting hinge loss function. Extensive experiments demonstrate that our method significantly improves both the diversity and accuracy of the samplings compared with previous state-of-the-art sampling approaches. Code and pre-trained models are available at https://github.com/Droliven/diverse_sampling.