论文标题

为新闻推荐建模多息新闻序列

Modeling Multi-interest News Sequence for News Recommendation

论文作者

Wang, Rongyao, Lu, Wenpeng

论文摘要

基于会话的新闻推荐系统将下一个新闻推荐给用户,通过建模她/他在会话中嵌入的一系列新闻/点击的潜在兴趣。通常,用户的兴趣是多种多样的,即有多种兴趣,与不同类型的新闻相对应,例如,会议中有关独特主题的新闻。 %对这种多重兴趣进行建模对于精确的新闻建议至关重要。但是,大多数现有方法通常忽略了如此重要的特征,因此无法区分和建模用户的潜在多重兴趣,从而阻碍了下一个新闻的准确建议。因此,本文提出了新闻推荐的多功能新闻序列(分钟)模型。在几分钟内,设计了一个基于自我注意的新闻编码器,以学习每个新闻的信息嵌入信息,然后设计出一个新颖的平行兴趣网络,以提取新闻顺序中嵌入的潜在多重兴趣,以准备下一新的建议。现实世界中数据集的实验结果表明,我们的模型可以比最新的模型获得更好的性能。

A session-based news recommender system recommends the next news to a user by modeling the potential interests embedded in a sequence of news read/clicked by her/him in a session. Generally, a user's interests are diverse, namely there are multiple interests corresponding to different types of news, e.g., news of distinct topics, within a session. %Modeling such multiple interests is critical for precise news recommendation. However, most of existing methods typically overlook such important characteristic and thus fail to distinguish and model the potential multiple interests of a user, impeding accurate recommendation of the next piece of news. Therefore, this paper proposes multi-interest news sequence (MINS) model for news recommendation. In MINS, a news encoder based on self-attention is devised on learn an informative embedding for each piece of news, and then a novel parallel interest network is devised to extract the potential multiple interests embedded in the news sequence in preparation for the subsequent next-news recommendations. The experimental results on a real-world dataset demonstrate that our model can achieve better performance than the state-of-the-art compared models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源