论文标题

ASUMAN:年龄段更新网络中的多个访问

ASUMAN: Age Sense Updating Multiple Access in Networks

论文作者

Mitra, Purbesh, Ulukus, Sennur

论文摘要

我们考虑一个完全连接的无线八卦网络,该网络由源和$ n $接收器节点组成。来源通过泊松过程进行​​自我更新,还将更新发送给节点作为泊松到达。收到更新后,节点更新了他们对源的知识。节点以泊松到达的形式八卦数据,以分散他们对来源的知识。八卦总速率受约束。网络的目标是与来源尽可能及时。在这项工作中,我们提出了一种分布式的机会性闲话方案Asuman,每次源进行自我更新之后,每个节点都会等待与当前年龄成比例的时间,并向网络的其他节点广播信号。这允许网络中具有较高年龄的节点保持沉默,并且只有低年龄的节点才能八卦,从而利用了约束总八卦率的很大一部分。我们在具有对称设置的网络中计算典型节点的平均年龄,并表明年龄尺度上的理论上限为$ O(1)$。与一个系统相比,Asuman的平均年龄为$ O(1)$,在该系统中盲目八卦,而固定的更新率却盲目地八卦,在这种情况下,年龄尺度为$ O(\ log n)$。

We consider a fully-connected wireless gossip network which consists of a source and $n$ receiver nodes. The source updates itself with a Poisson process and also sends updates to the nodes as Poisson arrivals. Upon receiving the updates, the nodes update their knowledge about the source. The nodes gossip the data among themselves in the form of Poisson arrivals to disperse their knowledge about the source. The total gossiping rate is bounded by a constraint. The goal of the network is to be as timely as possible with the source. In this work, we propose ASUMAN, a distributed opportunistic gossiping scheme, where after each time the source updates itself, each node waits for a time proportional to its current age and broadcasts a signal to the other nodes of the network. This allows the nodes in the network which have higher age to remain silent and only the low-age nodes to gossip, thus utilizing a significant portion of the constrained total gossip rate. We calculate the average age for a typical node in such a network with symmetric settings and show that the theoretical upper bound on the age scales as $O(1)$. ASUMAN, with an average age of $O(1)$, offers significant gains compared to a system where the nodes just gossip blindly with a fixed update rate in which case the age scales as $O(\log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源