论文标题

框架的共同体厅代数和共同体学稳定信封

Framed cohomological Hall algebras and cohomological stable envelopes

论文作者

Botta, Tommaso Maria

论文摘要

有多种猜想将Quiver $ Q $的某些替代的共生厅代数(Cohas)与Maulik-Okounkov的Yangian $ y^{q} _ {Mo} $替换有关,其构造是基于Nakajima volieSies的稳定概念。在本文中,我们介绍了模量堆栈的共同体学厅代数,该堆积的表示量表$ q $(框架Coha),我们表明,Nakajima品种$ \ Mathcal {m} _Q(\ fort for for for for for for for for for for Nakajima品种的脱节结合的同性恋共同体学) $ \ text {v} $和框架向量$ \ text {w} $具有框架COHA的subergebra的规范结构。仅限于此子代数,用稳定的信封图鉴定了代数乘法。作为推论,我们推断出一种明确的归纳公式来计算重言式类别的稳定信封。

There are multiple conjectures relating the cohomological Hall algebras (CoHAs) of certain substacks of the moduli stack of representations of a quiver $Q$ to the Yangian $Y^{Q}_{MO}$ by Maulik-Okounkov, whose construction is based on the notion of stable envelopes of Nakajima varieties. In this article, we introduce the cohomological Hall algebra of the moduli stack of framed representations of a quiver $Q$ (framed CoHA) and we show that the equivariant cohomology of the disjoint union of the Nakajima varieties $\mathcal{M}_Q(\text{v},\text{w})$ for all dimension vectors $\text{v}$ and framing vectors $\text{w}$ has a canonical structure of subalgebra of the framed CoHA. Restricted to this subalgebra, the algebra multiplication is identified with the stable envelope map. As a corollary, we deduce an explicit inductive formula to compute stable envelopes in terms of tautological classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源