论文标题
向后兼容的人重新识别的动态梯度重新激活
Dynamic Gradient Reactivation for Backward Compatible Person Re-identification
论文作者
论文摘要
我们研究人员重新识别(RE-ID)的向后兼容问题,该问题旨在限制更新的新模型的功能,以与画廊中旧模型的现有功能相提并论。大多数现有作品都采用基于蒸馏的方法,这些方法着重于推动新功能模仿旧功能。但是,基于蒸馏的方法本质上是最佳的,因为它迫使新的特征空间模仿旧特征空间。为了解决这个问题,我们提出了基于排名的向后兼容学习(RBCL),该学习直接优化了新功能和旧功能之间的排名指标。与以前的方法不同,RBCL仅推动新功能以在旧功能空间中找到最佳级别位置,而不是严格对齐,并且符合向后检索的最终目标。但是,用来使排名度量可区分的尖锐的Sigmoid函数也会造成梯度消失的问题,因此在训练后期的训练期间造成了排名的完善。为了解决这个问题,我们提出了动态梯度重新激活(DGR),该激素可以通过在远期步骤中添加动态计算的常数来重新激活抑制梯度。为了进一步帮助目标最佳位置,我们包括邻居上下文代理(NCAS),以近似训练期间的整个旧特征空间。与以前仅在内域设置上测试的作品不同,我们首次尝试引入跨域设置(包括受监督和无监督的设置),这些设置更有意义和困难。所有五个设置的实验结果表明,在所有设置下,所提出的RBCL都以大幅度优于先前的最新方法。
We study the backward compatible problem for person re-identification (Re-ID), which aims to constrain the features of an updated new model to be comparable with the existing features from the old model in galleries. Most of the existing works adopt distillation-based methods, which focus on pushing new features to imitate the distribution of the old ones. However, the distillation-based methods are intrinsically sub-optimal since it forces the new feature space to imitate the inferior old feature space. To address this issue, we propose the Ranking-based Backward Compatible Learning (RBCL), which directly optimizes the ranking metric between new features and old features. Different from previous methods, RBCL only pushes the new features to find best-ranking positions in the old feature space instead of strictly alignment, and is in line with the ultimate goal of backward retrieval. However, the sharp sigmoid function used to make the ranking metric differentiable also incurs the gradient vanish issue, therefore stems the ranking refinement during the later period of training. To address this issue, we propose the Dynamic Gradient Reactivation (DGR), which can reactivate the suppressed gradients by adding dynamic computed constant during forward step. To further help targeting the best-ranking positions, we include the Neighbor Context Agents (NCAs) to approximate the entire old feature space during training. Unlike previous works which only test on the in-domain settings, we make the first attempt to introduce the cross-domain settings (including both supervised and unsupervised), which are more meaningful and difficult. The experimental results on all five settings show that the proposed RBCL outperforms previous state-of-the-art methods by large margins under all settings.