论文标题

特征性区域的征函数限制的下限

Lower bounds for eigenfunction restrictions in lacunary regions

论文作者

Canzani, Yaiza, Toth, John A.

论文摘要

令$(m,g)$为紧凑,光滑的riemannian歧管,$ \ {u_h \} $为$ l^2 $ normalization laplace eigenFunctions的序列,在$ m \ setMinus \ supt $ fext {supp {supp} $ neq中,具有局部缺陷量$μ$ $π:t^*m \ to m $是规范投影。使用Carleman估计,我们证明,对于任何真正平滑的封闭的高度张开$ h \ subset(m \ setMinus \ text {supp}(supp}(π_*μ))$足够接近$ \ text {supp} {supp}(π_*μ),$,$ ge__ $ ge__________ e^{ - [\,d(h,\ text {supp}(π_*μ)) + \,δ] /h} $$ as $ h \ to 0^ + $。我们还表明,结果适用于Schrödinger操作员的本征函数,并将完全集成(QCI)系统的扭曲产品和联合特征功能应用于特征函数。

Let $(M,g)$ be a compact, smooth Riemannian manifold and $\{u_h\}$ be a sequence of $L^2$-normalized Laplace eigenfunctions that has a localized defect measure $μ$ in the sense that $ M \setminus \text{supp}(π_* μ) \neq \emptyset$ where $π:T^*M \to M$ is the canonical projection. Using Carleman estimates we prove that for any real-smooth closed hypersurface $H \subset (M\setminus \text{supp} (π_* μ))$ sufficiently close to $ \text{supp}(π_* μ),$ and for all $δ>0,$ $$ \int_{H} |u_h|^2 dσ\geq C_δ\, e^{- [\, d(H, \text{supp}(π_* μ)) + \,δ] /h} $$ as $h \to 0^+$. We also show that the result holds for eigenfunctions of Schrödinger operators and give applications to eigenfunctions on warped products and joint eigenfunctions of quantum completely integrable (QCI) systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源