论文标题
减少皮肤摩擦的酒窝:状态和观点
Dimples for skin-friction drag reduction: status and perspectives
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Dimples are small concavities imprinted on a flat surface, known to affect heat transfer and also flow separation and aerodynamic drag on bluff bodies when acting as a standard roughness. Recently, dimples have been proposed as a roughness pattern that is capable to reduce the turbulent drag of a flat plate, by providing a reduction of skin friction that compensates the dimple-induced pressure drag, and leads to a global benefit. The question whether dimples do actually work to reduce friction drag is still unsettled. In this paper, we provide a comprehensive review of the available information, touching upon the many parameters that characterize the problem. A number of reasons that contribute to explaining the contrasting literature information are discussed. We also provide guidelines for future studies, by highlighting key methodological steps required for a meaningful comparison between a flat and dimpled surface in view of drag reduction.