论文标题

自我监督的学习和局部对比损失用于检测和语义细分

Self-supervised Learning with Local Contrastive Loss for Detection and Semantic Segmentation

论文作者

Islam, Ashraful, Lundell, Ben, Sawhney, Harpreet, Sinha, Sudipta, Morales, Peter, Radke, Richard J.

论文摘要

我们提出了一种适用于半全球任务(例如对象检测和语义分割)的自我监督学习(SSL)方法。我们通过在训练过程中最大程度地减少像素级局部对比度(LC)损失,代表了同一图像转换版本的相应图像位置之间的局部一致性。可以将LC-Loss添加到现有的自我监督的学习方法中,并以最少的开销添加。我们使用可可,Pascal VOC和CityScapes数据集评估了两个下游任务的SSL方法 - 对象检测和语义细分。我们的方法的表现优于现有的最新SSL方法可可对象检测的方法1.9%,Pascal VOC检测1.4%,而CityScapes Sementation则0.6%。

We present a self-supervised learning (SSL) method suitable for semi-global tasks such as object detection and semantic segmentation. We enforce local consistency between self-learned features, representing corresponding image locations of transformed versions of the same image, by minimizing a pixel-level local contrastive (LC) loss during training. LC-loss can be added to existing self-supervised learning methods with minimal overhead. We evaluate our SSL approach on two downstream tasks -- object detection and semantic segmentation, using COCO, PASCAL VOC, and CityScapes datasets. Our method outperforms the existing state-of-the-art SSL approaches by 1.9% on COCO object detection, 1.4% on PASCAL VOC detection, and 0.6% on CityScapes segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源