论文标题

三角晶格上的半平面衍射问题

Half-plane diffraction problems on a triangular lattice

论文作者

Kapanadze, David, Pesetskaya, Ekaterina

论文摘要

我们研究了二维晶格波的薄条衍射问题。特殊的结构使我们能够考虑半侵入三角晶格上的问题,因此,我们研究了半平面中二维离散的Helmholtz方程的差异问题。鉴于解决方案的存在和唯一性,我们为真实的波数$ k \ in(0,3)\ backslash \ {2 \ sqrt {2} \} $提供了新的结果,而无需传递复杂的波数并导致解决方案的精确表示。为此,我们使用辐射解决方案的概念。最后,我们提出了一种数值计算的方法。在与两个小开口在超材料中的波沿相关的示例中,证明了我们方法的效率。

We investigate thin-slit diffraction problems for two-dimensional lattice waves. The peculiar structure allows us to consider the problems on the semi-infinite triangular lattice, consequently, we study Dirichlet problems for the two-dimensional discrete Helmholtz equation in a half-plane. In view of the existence and uniqueness of the solution, we provide new results for the real wave number $k\in (0,3)\backslash\{2\sqrt{2}\}$ without passing to the complex wave number and derive an exact representation formula for the solution. For this purpose, we use the notion of the radiating solution. Finally, we propose a method for numerical calculation. The efficiency of our approach is demonstrated in an example related to the propagation of wave fronts in metamaterials through two small openings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源