论文标题

层次三星级稳定性的代数和机器学习方法

Algebraic and machine learning approach to hierarchical triple-star stability

论文作者

Vynatheya, Pavan, Hamers, Adrian S., Mardling, Rosemary A., Bellinger, Earl P.

论文摘要

我们提出了两种确定层次三星级系统的动态稳定性的方法。第一个是从2001年开始对木马克 - 萨特斯稳定性配方的改进,在那里我们引入了对内轨道偏心率的依赖,并改善了对相互轨道倾斜的依赖。第二个涉及机器学习方法,我们使用多层感知器(MLP)将三星级系统分类为“稳定”和“不稳定”。为了实现这一目标,我们使用N-Body Code MSTAR生成了10^6个层次三元组的大型培训数据集。我们的两种方法的表现都比以前的稳定性标准更好,MLP模型表现最好。改进的稳定性公式和机器学习模型的总体分类精度分别为93%和95%。我们的MLP模型可以准确地预测所研究的参数范围内的任何分层三星级系统的稳定性,几乎不需要计算。

We present two approaches to determine the dynamical stability of a hierarchical triple-star system. The first is an improvement on the Mardling-Aarseth stability formula from 2001, where we introduce a dependence on inner orbital eccentricity and improve the dependence on mutual orbital inclination. The second involves a machine learning approach, where we use a multilayer perceptron (MLP) to classify triple-star systems as `stable' and `unstable'. To achieve this, we generate a large training data set of 10^6 hierarchical triples using the N-body code MSTAR. Both our approaches perform better than previous stability criteria, with the MLP model performing the best. The improved stability formula and the machine learning model have overall classification accuracies of 93 % and 95 % respectively. Our MLP model, which accurately predicts the stability of any hierarchical triple-star system within the parameter ranges studied with almost no computation required, is publicly available on Github in the form of an easy-to-use Python script.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源