论文标题

CTTK:一种在数值相对性中求解初始数据约束的新方法

CTTK: A new method to solve the initial data constraints in numerical relativity

论文作者

Aurrekoetxea, Josu C., Clough, Katy, Lim, Eugene A.

论文摘要

在具有非平凡问题配置的数值相对性模拟中,必须解决初始数据中指标变量的ADM公式的Hamiltonian和动量约束。我们介绍了一种基于标准的保形横向检测无(CTT)分解的新方案,其中我们没有将Hamiltonian约束作为2阶椭圆方程式解决平均曲率$ K $的选择,而是为$ K $选择一个代数方程,以选择$ k $。通过这样做,我们在不使用源术语的通常的保形重新缩放的情况下避免了哈密顿约束解决方案的存在和独特性问题。当来源是基本领域时,这一点尤其重要,因为从重建数量中重建该字段的配置可能是有问题的。使用迭代的多机求解器,我们表明该方法为尚未以数值相对性研究的几种初始条件提供了快速的收敛溶液。即(i)周期性的不均匀间距,具有大型随机高斯标量场扰动和(ii)渐变平坦的黑洞空位,带有旋转标量云。

In numerical relativity simulations with non-trivial matter configurations, one must solve the Hamiltonian and momentum constraints of the ADM formulation for the metric variables in the initial data. We introduce a new scheme based on the standard Conformal Transverse-Traceless (CTT) decomposition, in which instead of solving the Hamiltonian constraint as a 2nd order elliptic equation for a choice of mean curvature $K$, we solve an algebraic equation for $K$ for a choice of conformal factor. By doing so, we evade the existence and uniqueness problem of solutions of the Hamiltonian constraint without using the usual conformal rescaling of the source terms. This is particularly important when the sources are fundamental fields, as reconstructing the fields' configurations from the rescaled quantities is potentially problematic. Using an iterative multigrid solver, we show that this method provides rapid convergent solutions for several initial conditions that have not yet been studied in numerical relativity; namely (i) periodic inhomogeneous spacetimes with large random Gaussian scalar field perturbations and (ii) asymptotically flat black hole spacetimes with rotating scalar clouds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源