论文标题

随机凸优化的SDE视角

An SDE perspective on stochastic convex optimization

论文作者

Maulen-Soto, Rodrigo, Fadili, Jalal, Attouch, Hedy

论文摘要

我们在随机误差下分析了梯度样流的全局和局部行为,目的是用嘈杂的梯度输入解决凸优化问题。我们首先使用随机微分方程来研究不受约束的可微分凸情况,其中漂移项为减去目标函数的梯度,而扩散项则是边界或正方形集成。在这种情况下,在Lipschitz的梯度连续性下,我们的第一个主要结果几乎显示了目标和轨迹过程朝着目标函数的最小化器的收敛。我们还通过在凸,强烈凸和(局部)lojasiewicz案的预期中建立几个新的和偏僻的收敛速率来提供全面的复杂性分析。后者涉及本地分析,具有挑战性,需要衡量理论的非平凡论点。然后,我们将研究扩展到受约束的情况,更普遍地扩展到某些非平滑情况。我们表明,我们的几个结果具有通过cocoercive单调操作员替换目标函数的梯度获得的自然扩展。这使得具有相同的“平滑 +非滑动”凸结构的优化问题获得类似的收敛结果。最后,我们考虑了基于Moreau Invelope的非平滑优化的结果的另一种扩展。

We analyze the global and local behavior of gradient-like flows under stochastic errors towards the aim of solving convex optimization problems with noisy gradient input. We first study the unconstrained differentiable convex case, using a stochastic differential equation where the drift term is minus the gradient of the objective function and the diffusion term is either bounded or square-integrable. In this context, under Lipschitz continuity of the gradient, our first main result shows almost sure convergence of the objective and the trajectory process towards a minimizer of the objective function. We also provide a comprehensive complexity analysis by establishing several new pointwise and ergodic convergence rates in expectation for the convex, strongly convex, and (local) Łojasiewicz case. The latter, which involves local analysis, is challenging and requires non-trivial arguments from measure theory. Then, we extend our study to the constrained case and more generally to certain nonsmooth situations. We show that several of our results have natural extensions obtained by replacing the gradient of the objective function by a cocoercive monotone operator. This makes it possible to obtain similar convergence results for optimization problems with an additively "smooth + non-smooth" convex structure. Finally, we consider another extension of our results to non-smooth optimization which is based on the Moreau envelope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源