论文标题

估计双变量缩放样品云的限制形状:具有对现有极端依赖性特性的自洽推断的其他好处

Estimating the limiting shape of bivariate scaled sample clouds: with additional benefits of self-consistent inference for existing extremal dependence properties

论文作者

Simpson, Emma S., Tawn, Jonathan A.

论文摘要

对双变量极端事件的成功统计分析的关键在于两个变量之间尾巴依赖关系的灵活建模。在极端价值理论文献中,可以根据不同的渐近限制来模拟各种技术来对尾部依赖的各个方面进行建模。 Balkema和Nolde(2010)和Nolde(2014)的结果强调了在表征整个关节尾部时研究适当尺度样品云的限制形状的重要性。现在,我们开发了此限制集的第一个统计推断,这对于统一的推理框架在关节尾部的不同方面具有相当重要的重要性。此外,Nolde和Wadsworth(2022)将该限制设置为各种现有的极端依赖框架。因此,我们的新极限集推断的副产品是几种极端依赖度量的第一组自洽估计量,避免了当前的矛盾结论。在模拟中,我们的极限集估计器在一系列分布中取得了成功,相应的极端依赖估计器对现有技术提供了重大的关节改进和小小的边际改进。我们考虑在海浪高度上的应用,我们的估计成功地捕获了预期的弱点,随着位置之间的距离的增加。

The key to successful statistical analysis of bivariate extreme events lies in flexible modelling of the tail dependence relationship between the two variables. In the extreme value theory literature, various techniques are available to model separate aspects of tail dependence, based on different asymptotic limits. Results from Balkema and Nolde (2010) and Nolde (2014) highlight the importance of studying the limiting shape of an appropriately-scaled sample cloud when characterising the whole joint tail. We now develop the first statistical inference for this limit set, which has considerable practical importance for a unified inference framework across different aspects of the joint tail. Moreover, Nolde and Wadsworth (2022) link this limit set to various existing extremal dependence frameworks. Hence, a by-product of our new limit set inference is the first set of self-consistent estimators for several extremal dependence measures, avoiding the current possibility of contradictory conclusions. In simulations, our limit set estimator is successful across a range of distributions, and the corresponding extremal dependence estimators provide a major joint improvement and small marginal improvements over existing techniques. We consider an application to sea wave heights, where our estimates successfully capture the expected weakening extremal dependence as the distance between locations increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源