论文标题
双重决策改善了开放式全盘细分
Dual Decision Improves Open-Set Panoptic Segmentation
论文作者
论文摘要
开放式综合分段(OPS)问题是一个新的研究方向,旨在对\已知类别和\未知类进行分割,即在培训集中从未注释的对象(“事物”)。 OP的主要挑战是双重的:(1)\未知物体出现的无限可能性使得很难从有限数量的培训数据中对其进行建模。 (2)在培训时,我们仅提供“ void”类别,该类别基本上将“未知事物”和“背景”类混合在一起。我们从经验上发现,直接使用“ void”类别来监督\已知类别或“背景”分类器而不筛选将导致不满意的OPS结果。在本文中,我们提出了一个分裂和争议计划,以制定对OPS的双重决策过程。我们表明,通过将\已知的类别歧视器与其他类别不合时宜的对象预测头正确相结合,可以显着提高OPS性能。具体而言,我们首先建议创建一个仅具有\已知类别的分类器,并让“ void”类建议从这些类别中获得较低的预测概率。然后,我们使用其他对象预测头将“未知事物”与背景区分开。为了进一步提高性能,我们介绍了从最新型号生成的“未知事物”伪标签,以丰富训练集。我们广泛的实验评估表明,我们的方法显着提高了\未知的类圆形质量,比现有最佳表现最佳方法的相对改进超过30 \%。
Open-set panoptic segmentation (OPS) problem is a new research direction aiming to perform segmentation for both \known classes and \unknown classes, i.e., the objects ("things") that are never annotated in the training set. The main challenges of OPS are twofold: (1) the infinite possibility of the \unknown object appearances makes it difficult to model them from a limited number of training data. (2) at training time, we are only provided with the "void" category, which essentially mixes the "unknown thing" and "background" classes. We empirically find that directly using "void" category to supervise \known class or "background" classifiers without screening will lead to an unsatisfied OPS result. In this paper, we propose a divide-and-conquer scheme to develop a dual decision process for OPS. We show that by properly combining a \known class discriminator with an additional class-agnostic object prediction head, the OPS performance can be significantly improved. Specifically, we first propose to create a classifier with only \known categories and let the "void" class proposals achieve low prediction probability from those categories. Then we distinguish the "unknown things" from the background by using the additional object prediction head. To further boost performance, we introduce "unknown things" pseudo-labels generated from up-to-date models to enrich the training set. Our extensive experimental evaluation shows that our approach significantly improves \unknown class panoptic quality, with more than 30\% relative improvements than the existing best-performed method.