论文标题
使用测量数据库评估内部机舱噪声的贝叶斯NVH元模型
Bayesian NVH metamodels to assess interior cabin noise using measurement databases
论文作者
论文摘要
近年来,已经非常重视工程的车辆的声学签名,这代表了乘客的整体舒适度。由于生产汽车的高度不确定的行为,概率元模型或替代物对于估计NVH分散体并评估不同的NVH风险很有用。这些元模型遵循身体行为,并应在早期设计过程中作为设计空间探索工具作为支持NVH优化的设计。测量数据库构成了不同的噪声路径,例如空气动力学噪声(风孔测试),轮胎路线相互作用噪声(滚动噪声)以及由于电动机(抱怨噪声)而引起的噪声。这项研究工作提出了一种全球NVH元模型技术,用于宽带噪声,例如空气动力和滚动噪声,利用了贝叶斯框架,该框架考虑了有关复杂物理机制的先前(域 - 专家)知识。具有多项式和高斯基函数的广义加性模型(GAM)用于模拟声压水平(SPL)对预测变量的依赖性。此外,使用点估计值基于数据生成机制的参数引导算法用于在未知参数中估算分散体。使用使用No-U-Turn采样器(NUTS)的开源库PYMC3进行概率建模,并使用交叉验证技术验证了开发的模型。
In recent years, a great emphasis has been put on engineering the acoustic signature of vehicles that represents the overall comfort level for passengers. Due to highly uncertain behavior of production cars, probabilistic metamodels or surrogates can be useful to estimate the NVH dispersion and assess different NVH risks. These metamodels follow physical behaviors and shall aid as a design space exploration tool during the early stage design process to support the NVH optimization. The measurement databases constitute different noise paths such as aerodynamic noise (wind-tunnel test), tire-pavement interaction noise (rolling noise), and noise due to electric motors (whining noise). This research work proposes a global NVH metamodeling technique for broadband noises such as aerodynamic and rolling noises exploiting the Bayesian framework that takes into account the prior (domain-expert) knowledge about complex physical mechanisms. Generalized additive models (GAMs) with polynomials and Gaussian basis functions are used to model the dependency of sound pressure level (SPL) on predictor variables. Moreover, parametric bootstrap algorithm based on data-generating mechanism using the point estimates is used to estimate the dispersion in unknown parameters. Probabilistic modelling is carried out using an open-source library PyMC3 that utilizes No-U-Turn sampler (NUTS) and the developed models are validated using Cross-Validation technique.