论文标题
游戏状态通过游戏场景增强
Game State Learning via Game Scene Augmentation
论文作者
论文摘要
对于任何人工智能任务,包括游戏玩法,测试,玩家建模和程序内容生成,访问准确的游戏状态信息至关重要。自我监督的学习(SSL)技术已证明能够从游戏素材的高维像素输入中推断出准确的游戏状态信息,以从压缩的潜在表示中。对比度学习是一种流行的SSL范式,对游戏图像的视觉理解来自对比鲜明的和类似的游戏状态,这些状态通过简单的图像增强方法定义。在这项研究中,我们介绍了一种新的游戏场景增强技术(名为GameClr),该技术利用游戏引擎来定义和综合不同游戏状态的特定,高度控制的效果,从而提高了对比鲜明的学习表现。我们在Carla驱动模拟器环境的图像上测试了GAMECLR技术,并将其与流行的SIMCLR基线SSL方法进行了比较。我们的结果表明,与基线相比,GAMECLR可以从游戏录像中推断游戏的状态信息。我们提出的方法使我们能够通过直接利用屏幕像素作为输入来进行游戏人工智能研究。
Having access to accurate game state information is of utmost importance for any artificial intelligence task including game-playing, testing, player modeling, and procedural content generation. Self-Supervised Learning (SSL) techniques have shown to be capable of inferring accurate game state information from the high-dimensional pixel input of game footage into compressed latent representations. Contrastive Learning is a popular SSL paradigm where the visual understanding of the game's images comes from contrasting dissimilar and similar game states defined by simple image augmentation methods. In this study, we introduce a new game scene augmentation technique -- named GameCLR -- that takes advantage of the game-engine to define and synthesize specific, highly-controlled renderings of different game states, thereby, boosting contrastive learning performance. We test our GameCLR technique on images of the CARLA driving simulator environment and compare it against the popular SimCLR baseline SSL method. Our results suggest that GameCLR can infer the game's state information from game footage more accurately compared to the baseline. Our proposed approach allows us to conduct game artificial intelligence research by directly utilizing screen pixels as input.