论文标题

通过GAN反转功能磁共振成像的面部图像重建,并具有改善的属性一致性

Facial Image Reconstruction from Functional Magnetic Resonance Imaging via GAN Inversion with Improved Attribute Consistency

论文作者

Chang, Pei-Chun, Tien, Yan-Yu, Chen, Chia-Lin, Chen, Li-Fen, Chen, Yong-Sheng, Chan, Hui-Ling

论文摘要

神经科学研究表明,大脑编码视觉内容并将信息嵌入神经活动中。最近,深度学习技术通过将大脑活动映射到使用生成的对抗网络(GAN)来刺激来促进了解决视觉重建的尝试。但是,这些研究都没有考虑图像空间中潜在代码的语义含义。省略语义信息可能会限制性能。在这项研究中,我们提出了一个新框架,以从功能磁共振成像(fMRI)数据中重建面部图像。使用此框架,首先将GAN反转应用于训练图像编码器以在图像空间中提取潜在代码,然后使用线性转换将其桥接到fMRI数据中。按照使用属性分类器从fMRI数据中标识的属性,确定操纵属性的方向,并且属性操纵器调整了潜在代码,以提高可见图像和重建图像之间的一致性。我们的实验结果表明,提出的框架实现了两个目标:(1)从fMRI数据中重建清晰的面部图像,以及(2)保持语义特征的一致性。

Neuroscience studies have revealed that the brain encodes visual content and embeds information in neural activity. Recently, deep learning techniques have facilitated attempts to address visual reconstructions by mapping brain activity to image stimuli using generative adversarial networks (GANs). However, none of these studies have considered the semantic meaning of latent code in image space. Omitting semantic information could potentially limit the performance. In this study, we propose a new framework to reconstruct facial images from functional Magnetic Resonance Imaging (fMRI) data. With this framework, the GAN inversion is first applied to train an image encoder to extract latent codes in image space, which are then bridged to fMRI data using linear transformation. Following the attributes identified from fMRI data using an attribute classifier, the direction in which to manipulate attributes is decided and the attribute manipulator adjusts the latent code to improve the consistency between the seen image and the reconstructed image. Our experimental results suggest that the proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源