论文标题

徒手3D超声重建的深度运动网络

Deep Motion Network for Freehand 3D Ultrasound Reconstruction

论文作者

Luo, Mingyuan, Yang, Xin, Wang, Hongzhang, Du, Liwei, Ni, Dong

论文摘要

徒手3D超声(US)由于其低成本和不受限制的视野而具有重要的临床价值。最近,深度学习算法已消除了其对笨重且昂贵的外部定位设备的依赖。但是,难以提高重建准确性仍然受到困难的高度位移估计和累积漂移的巨大阻碍。在这种情况下,我们提出了一个新颖的深度运动网络(MONET),该网络从速度的角度集成了图像和轻巧的传感器,称为惯性测量单元(IMU),以减轻上述障碍。我们的贡献是两个方面。首先,我们首次介绍IMU加速度,以估计飞机外的高度位移。我们提出了一个时间和多分支结构,以挖掘低信噪比(SNR)加速度的有价值的信息。其次,我们提出了一种多模式的在线自我监督策略,该策略利用IMU信息作为弱标签以进行自适应优化,以减少漂移错误并进一步改善加速噪声的影响。实验表明,我们提出的方法实现了优越的重建性能,超过了最先进的方法。

Freehand 3D ultrasound (US) has important clinical value due to its low cost and unrestricted field of view. Recently deep learning algorithms have removed its dependence on bulky and expensive external positioning devices. However, improving reconstruction accuracy is still hampered by difficult elevational displacement estimation and large cumulative drift. In this context, we propose a novel deep motion network (MoNet) that integrates images and a lightweight sensor known as the inertial measurement unit (IMU) from a velocity perspective to alleviate the obstacles mentioned above. Our contribution is two-fold. First, we introduce IMU acceleration for the first time to estimate elevational displacements outside the plane. We propose a temporal and multi-branch structure to mine the valuable information of low signal-to-noise ratio (SNR) acceleration. Second, we propose a multi-modal online self-supervised strategy that leverages IMU information as weak labels for adaptive optimization to reduce drift errors and further ameliorate the impacts of acceleration noise. Experiments show that our proposed method achieves the superior reconstruction performance, exceeding state-of-the-art methods across the board.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源