论文标题

DEEPMB:实时光声图像重建的深神经网络,可调节速度

DeepMB: Deep neural network for real-time optoacoustic image reconstruction with adjustable speed of sound

论文作者

Dehner, Christoph, Zahnd, Guillaume, Ntziachristos, Vasilis, Jüstel, Dominik

论文摘要

多光谱光声断层扫描(MSOT)是一种高分辨率功能成像方式,可以通过量化组织中内源性发色团的对比度,非侵入性地访问广泛的病理生理现象。实时成像必须将MSOT转化为临床成像,可视化与疾病进展相关的动态病理生理变化,并实现原位诊断。基于模型的重建提供了最先进的光声图像;但是,在实时成像过程中,基于模型的重建提供的图像质量仍然无法访问,因为该算法是迭代的且计算要求的。深度学习提供了更快的重建,但是缺乏地面真相训练数据可能会导致体内数据的图像质量降低。我们介绍了一个称为DEEPMB的框架,该框架通过使用深神经网络表达基于模型的重建,以在每个图像31 ms中实现31 ms的任意输入数据的准确光声图像重建。 DEEPMB通过对基于模型的重建产生的现实世界图像和地面真相图像合成的信号进行训练,促进了对实验测试数据的准确概括。该框架为广泛的解剖位置提供了聚焦图像,因为它支持成像过程中声音重建速度的动态调整。此外,DEEPMB与现代多光谱光声断层扫描仪的数据速率和图像大小兼容。我们在体内图像的不同数据集上评估了DEEPMB,并证明该框架重建图像比基于迭代模型的参考方法快1000倍,同时提供了几乎相同的图像质量。具有DEEPMB的准确和实时图像重建可以使手持光声断层扫描的高分辨率和多光谱对比度完全访问。

Multispectral optoacoustic tomography (MSOT) is a high-resolution functional imaging modality that can non-invasively access a broad range of pathophysiological phenomena by quantifying the contrast of endogenous chromophores in tissue. Real-time imaging is imperative to translate MSOT into clinical imaging, visualize dynamic pathophysiological changes associated with disease progression, and enable in situ diagnoses. Model-based reconstruction affords state-of-the-art optoacoustic images; however, the image quality provided by model-based reconstruction remains inaccessible during real-time imaging because the algorithm is iterative and computationally demanding. Deep learning affords faster reconstruction, but the lack of ground truth training data can lead to reduced image quality for in vivo data. We introduce a framework, termed DeepMB, that achieves accurate optoacoustic image reconstruction for arbitrary input data in 31 ms per image by expressing model-based reconstruction with a deep neural network. DeepMB facilitates accurate generalization to experimental test data through training on signals synthesized from real-world images and ground truth images generated by model-based reconstruction. The framework affords in-focus images for a broad range of anatomical locations because it supports dynamic adjustment of the reconstruction speed of sound during imaging. Furthermore, DeepMB is compatible with the data rates and image sizes of modern multispectral optoacoustic tomography scanners. We evaluate DeepMB on a diverse dataset of in vivo images and demonstrate that the framework reconstructs images 1000 times faster than the iterative model-based reference method while affording near-identical image qualities. Accurate and real-time image reconstructions with DeepMB can enable full access to the high-resolution and multispectral contrast of handheld optoacoustic tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源