论文标题

$ g $的第一个通道时间 - 消失的粒子的范围

First passage time for $g$--subdiffusion process of vanishing particles

论文作者

Kosztołowicz, Tadeusz

论文摘要

分别使用Caputo分数时间衍生物相对于另一个功能$ G_1 $和$ G_2 $的副延伸方程和分子存活方程,都用于描述分子的扩散,该分子可以随时以恒定的概率消失。该过程可以解释为``普通''细胞扩散和``普通''分子生存过程,在该过程中,函数$ g_1 $和$ g_2 $更改了时间表。我们得出了该过程的第一分时间分布。当功能$ g_1 $和$ g_2 $彼此相关时,模型可以包括次扩散和分子消失过程的相互影响。例如,我们考虑了高扩散和分子生存高度相关的过程,这与$ g_1 \ equiv g_2 $的情况相对应。

Subdiffusion equation and molecule survival equation, both with Caputo fractional time derivatives with respect to another functions $g_1$ and $g_2$, respectively, are used to describe diffusion of a molecule that can disappear at any time with a constant probability. The process can be interpreted as ``ordinary'' subdiffusion and ``ordinary'' molecule survival process in which timescales are changed by the functions $g_1$ and $g_2$. We derive the first-passage time distribution for the process. The mutual influence of subdiffusion and molecule vanishing processes can be included in the model when the functions $g_1$ and $g_2$ are related to each other. As an example, we consider the processes in which subdiffusion and molecule survival are highly related, which corresponds to the case of $g_1\equiv g_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源