论文标题

统一的Sørensen-Mølmer门和米尔本大门与光学机械示例

Unifying Sørensen-Mølmer gate and Milburn gate with an optomechanical example

论文作者

Ma, Yue, Pace, Manuel C. C., Kim, M. S.

论文摘要

Sørensen-Mølmer门和米尔伯恩门是两个几何相门,分别以连续和脉冲的相互作用状态在目标模式下通过与辅助机械模式的相互作用产生非线性自我相互作用。在本文中,我们旨在通过证明Sørensen-Mølmer门是米尔本门的连续极限来统一两个大门,强调机械相空间中的几何解释。我们明确考虑不完美的门参数,重点是Sørensen-Mølmer门的相对误差以及米尔伯恩门的相位角度增量。我们发现,尽管最终状态的纯度在降低了相互作用强度并多次穿越机械相空间时增加了两个大门,但保真度的行为有所不同。我们指出的是,存在差异是因为相互作用强度取决于从脉冲制度中持续限制时相对误差,从而统一了两个门的数学框架。我们在光学系统的示例中证明了这种统一,还考虑了机械耗散。我们强调,统一框架有助于推导连续交互制度动态的新方法,而无需求解微分方程。

Sørensen-Mølmer gate and Milburn gate are two geometric phase gates, generating nonlinear self-interaction of a target mode via its interaction with an auxiliary mechanical mode, in the continuous and pulsed interaction regime, respectively. In this paper, we aim at unifying the two gates by demonstrating that Sørensen-Mølmer gate is the continuous limit of Milburn gate, emphasising the geometrical interpretation in the mechanical phase space. We explicitly consider imperfect gate parameters, focusing on relative errors in time for Sørensen-Mølmer gate and in phase angle increment for Milburn gate. We find that, although the purities of the final states increase for the two gates upon reducing the interaction strength together with traversing the mechanical phase space multiple times, the fidelities behave differently. We point out that, the difference exists because the interaction strength depends on the relative error when taking the continuous limit from the pulsed regime, thereby unifying the mathematical framework of the two gates. We demonstrate this unification in the example of an optomechanical system, where mechanical dissipation is also considered. We highlight that, the unified framework facilitates the new method of deriving the dynamics of the continuous interaction regime without solving differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源