论文标题

通过图神经网络启用的颗粒悬浮液的快速模拟

Fast Simulation of Particulate Suspensions Enabled by Graph Neural Network

论文作者

Ma, Zhan, Ye, Zisheng, Pan, Wenxiao

论文摘要

预测受水动力相互作用(HI)和外部驱动的悬浮液中颗粒的动态行为对于许多应用至关重要。通过收集先进的深度学习技术,目前的工作引入了一个新的框架,流体动力相互作用图神经网络(Hignn),以推断和预测Stokes悬浮液中粒子的动力学。它克服了传统方法在计算效率,准确性和/或可传递性方面的局限性。特别是,通过将图形和具有可学习参数的神经网络表示的数据结构结合,Hignn构建了粒子的移动性张量的替代建模,这是预测粒子动力学的关键,这些动力学会受到HI和外部力量和外部力量。为了说明HI的多体性质,我们通过将高阶连接性引入图表和相应的卷积操作来概括最新的GNN。对于训练Hignn,我们只需要在感兴趣的领域中少数粒子的数据,因此训练成本可以保持较低。一旦构建,Hignn允许快速预测颗粒的速度,并可以转移到同一域中不同数量/浓度颗粒和任何外部强迫的悬浮液。它具有准确捕获远距离HI和短距离润滑效应的能力。我们证明了各种系统中提议的Hignn框架的准确性,效率和可传递性。计算资源的要求最低:大多数模拟只需要一个带有一个GPU的桌面;大型悬浮液的100,000个颗粒的模拟要求高达6 GPU。

Predicting the dynamic behaviors of particles in suspension subject to hydrodynamic interaction (HI) and external drive can be critical for many applications. By harvesting advanced deep learning techniques, the present work introduces a new framework, hydrodynamic interaction graph neural network (HIGNN), for inferring and predicting the particles' dynamics in Stokes suspensions. It overcomes the limitations of traditional approaches in computational efficiency, accuracy, and/or transferability. In particular, by uniting the data structure represented by a graph and the neural networks with learnable parameters, the HIGNN constructs surrogate modeling for the mobility tensor of particles which is the key to predicting the dynamics of particles subject to HI and external forces. To account for the many-body nature of HI, we generalize the state-of-the-art GNN by introducing higher-order connectivity into the graph and the corresponding convolutional operation. For training the HIGNN, we only need the data for a small number of particles in the domain of interest, and hence the training cost can be maintained low. Once constructed, the HIGNN permits fast predictions of the particles' velocities and is transferable to suspensions of different numbers/concentrations of particles in the same domain and to any external forcing. It has the ability to accurately capture both the long-range HI and short-range lubrication effects. We demonstrate the accuracy, efficiency, and transferability of the proposed HIGNN framework in a variety of systems. The requirement on computing resource is minimum: most simulations only require a desktop with one GPU; the simulations for a large suspension of 100,000 particles call for up to 6 GPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源