论文标题

Sachdev-ye-Kitaev模型的精确低温扩展

Precise Low-Temperature Expansions for the Sachdev-Ye-Kitaev model

论文作者

Cruz, Erick Arguello, Tarnopolsky, Grigory

论文摘要

我们从数字上求解了使用Legendre多项式分解并达到$ 10^{ - 36} $精度的Sachdev-Ye-Kitaev(Syk)型号的大型$ n $ dyson-schwinger方程。使用此,我们计算低温下Syk模型的能量,并将其系列扩展达到$ t^{7.54} $。虽然建议扩展包含术语$ t^{3.77} $和$ t^{5.68} $,但我们发现,第一个非温度的非直集功率为$ t^{6.54} $,它来自fermion biinear biinear biinear biinear biinear biinear biinear biinear birinear $ o_ o_ o_ o_ o_ o_ {1} = us_ {h_ fermion bectial_ {1} $ h_ {1} \大约3.77 $。 $ T^{6.54} $项面前的系数与共形扰动理论的预测非常吻合。我们得出的结论是,即使SYK模型并非严格的保形,同形扰动理论似乎也起作用。

We solve numerically the large $N$ Dyson-Schwinger equations for the Sachdev-Ye-Kitaev (SYK) model utilizing the Legendre polynomial decomposition and reaching $10^{-36}$ accuracy. Using this we compute the energy of the SYK model at low temperatures $T\ll J$ and obtain its series expansion up to $T^{7.54}$. While it was suggested that the expansion contains terms $T^{3.77}$ and $T^{5.68}$, we find that the first non-integer power of temperature is $T^{6.54}$, which comes from the two point function of the fermion bilinear operator $O_{h_{1}}=χ\partial_τ^{3}χ$ with scaling dimension $h_{1}\approx 3.77$. The coefficient in front of $T^{6.54}$ term agrees well with the prediction of the conformal perturbation theory. We conclude that the conformal perturbation theory appears to work even though the SYK model is not strictly conformal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源